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Abstract

In this thesis, we tackle the task of question answering (QA). Machine com-

prehension (MC) systems mimic the process of reading comprehension (RC)

by answering questions after understanding a natural language text. We first

present a deep neural network model for MC-based QA. We develop an end-

to-end question-focused multi-factor attention network for answer extraction.

Our proposed multi-factor attentive encoding helps to aggregate relevant ev-

idence by using a tensor-based multi-factor attention mechanism. Due to the

proposed question-focused attention pointing mechanism, it also learns to fo-

cus on the important question words to encode the aggregated question vec-

tor. Our proposed model achieves significant improvements over prior work

on three large-scale challenging QA datasets.

The second task that we have tackled is nil-aware answer extraction for

machine reading comprehension. For a given question, the associated pas-

sage might not contain any valid answer. These questions are defined as nil

questions. Most of the recently proposed neural models do not consider nil

questions, although it is crucial for a practical QA system to be able to deter-

mine whether a text passage contains a valid answer for a question. We focus

on developing models that extract an answer for a question if and only if the
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associated text passage contains a valid answer. Otherwise, they are expected

to return Nil as answer. We propose a nil-aware answer extraction framework

that is capable of returning Nil or a text span from the associated passage as

an answer in a single step. In addition to our proposed MC model, we show

that our proposed framework can be easily integrated with several other re-

cently proposed QA models developed for reading comprehension and can

be trained in an end-to-end fashion. The proposed framework decomposes

pieces of evidence into relevant and irrelevant parts and then combines them

to infer the existence of any answer. Experiments show that the integration

of our proposed framework significantly outperforms several strong baseline

systems that use pipeline or threshold-based approaches.

Finally, we focus on developing a system for multi-turn conversational

question answering. Recently proposed conversational question answering

systems lack the ability to ask a follow-up clarification question when a given

question is underspecified. In this work, we focus on developing a conversa-

tional question answering system that can predict the answer to a question in

a conversation, and has the ability to ask a follow-up clarification question if

the question is underspecified. We propose a pipeline approach which consists

of an answer prediction model and a follow-up question generation model.

The answer prediction model is based on a dual co-attention network while

the follow-up question generation model is based on a sequence-to-sequence

neural network enhanced with a copying mechanism. Experiments on the

ShARC dataset show the e↵ectiveness of the proposed system.
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Chapter 1

Introduction

In many science fiction movie scenes, we witness people talking to machines

in natural language, just like two human beings participating in a natural

conversation. Such a dialog agent powered by artificial intelligence has always

been the dream of researchers during the last several decades.

In 2011, the natural language processing (NLP) community witnessed

a breakthrough when IBM developed its DeepQA system, called Watson.

Watson (Ferrucci et al., 2010) beat the biggest all-time winner Brad Rut-

ter, and the longest championship record-holder Ken Jennings. The driving

forces behind Watson were advances in NLP, information retrieval (IR), ma-

chine learning, knowledge representation, and reasoning. Despite this success,

research on answering complex questions and developing intelligent conver-

sational question answering systems is still in the early stages.

Large-scale question answering (QA) systems such as DeepQA rely on

multiple sources to answer questions. Besides Wikipedia, it also relies on
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knowledge bases (KBs), dictionaries, news articles, books, etc. As a result,

such systems heavily rely on information redundancy among the sources to

answer correctly. Having a single knowledge source forces the model to be

very precise while searching for an answer, since the evidence needed to

answer a question might appear only once. This challenge thus encourages

research in the ability of a machine to read, a key motivation for the machine

comprehension subfield (Hirschman et al., 1999; Ng et al., 2000) and the

creation of a number of machine reading comprehension datasets such as

CNN/Daily Mail (Hermann et al., 2015), CBT (Hill et al., 2016), SQuAD

(Rajpurkar et al., 2016), NewsQA (Trischler et al., 2017), TriviaQA (Joshi

et al., 2017), RACE (Lai et al., 2017), SearchQA (Dunn et al., 2017), etc.

1.1 Scope of the Thesis

Machine reading comprehension (RC) can be of several types. For instance,

in multi-choice RC (Lai et al., 2017), a system needs to identify the correct

choice given a passage, a question, and a set of candidate answer choices.

In cloze-style RC (Hermann et al., 2015), a system needs to find the correct

answer from the associated passage given a fill-in-the-blank question. An

answer is often a single word in this case. In other cases such as SQuAD,

NewsQA, TriviaQA, and SearchQA, a system needs to extract a span of text

as the answer from the associated passage given a question. In this case, the

questions are not necessarily seeking factual answers and the answers can be

of any length. In this thesis, we focus on RC that requires a model to extract

a span of text as answer. We also develop models to tackle the scenario when

2



the associated passage does not contain any valid answer for a given question.

We call this task nil-aware answer span extraction. In this case, the system

is expected to return Nil as the answer.

An example is given as follows:

(CNN) – An American woman died aboard a cruise ship that docked

at Rio de Janeiro on Tuesday, the same ship on which 86 passengers

previously fell ill, according to the state-run Brazilian news agency,

Agencia Brasil.

The American tourist died aboard the MS Veendam, owned by cruise

operator Holland America. Federal Police told Agencia Brasil that

forensic doctors were investigating her death.

The ship’s doctors told police that the woman was elderly and su↵ered

from diabetes and hypertension, according to the agency.

The other passengers came down with diarrhea prior to her death dur-

ing an earlier part of the trip, the ship’s doctors said.

The Veendam left New York 36 days ago for a South America tour.

Question: What did the elderly woman su↵ered from?

Answer: diabetes and hypertension

Question: Who is the ship’s doctor?

Answer: Nil

For the first question, the system needs to extract the valid answer dia-

betes and hypertension, whereas in the second question, it should return Nil

as the answer due to the absence of any valid answer.

3



Figure 1.1: A conversational machine reading comprehension-based question
answering example. A system is given a rule text as the associated passage
for answering the user’s question with a specific scenario. During each turn in
the conversation history, the system can ask the user a follow-up question to
inquire about missing information, and the user answers it with Yes or No.
Finally, the system answers the user’s question or ask a clarification question
if there is still some missing information.
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Finally, we propose a deep neural network-based model for conversational

machine reading comprehension-based QA. Humans converse with each other

to either seek or test their knowledge about a subject. Depending on the an-

swer, another follow-up question is asked and the second answer builds on

what has already been discussed. This incremental aspect makes human con-

versations succinct. An inability to build and maintain common ground in

this way is part of why virtual assistants usually do not seem like competent

conversational partners. In conversational machine reading comprehension-

based QA, for a given question, a system needs to answer it, or generate a

follow-up question if the question is underspecified, by understanding natu-

ral language text documents and the previous question-answer pairs in the

conversation history. We aim to tackle this task by formulating the prob-

lem as a combination of two independent tasks, namely answer classification

and follow-up question generation. In this work, we focus on the recently

released ShARC dataset (Saeidi et al., 2018). In the ShARC dataset, a sys-

tem must help users answer underspecified questions by participating in an

information-gathering dialog. For example, in Figure 1.1 the system asks a

series of questions to help the user decide if he or she is an eligible Veteran.

A key challenge in conversational machine reading comprehension-based QA

is that the rules by which the decision is made are only provided in nat-

ural language text. For every instance, the system must read the rule text

passage and the conversation history to determine the answer (Yes, No, or

Irrelevant), or generate a follow-up clarification question if it still needs more

information to answer the user’s question.

5



1.2 Contributions of the Thesis

There are three major contributions of this thesis, outlined as follows:

• Most of the recently proposed neural network models for QA use re-

current neural networks (RNNs) such as LSTM and GRU for evidence

encoding. However, such RNN-based models fail to capture long-range

dependencies in practice. They do not possess the capability to ag-

gregate multiple facts distributed across multiple sentences. They are

limited to only capturing passage-question interaction. They also do

not explicitly focus on identifying the important words in a question

which often play a critical role in QA. To overcome these di�culties,

we propose a novel end-to-end question-focused multi-factor attention

network for machine reading comprehension. Our proposed multi-factor

attentive encoding approach is based on tensor transformation to syn-

thesize meaningful evidence across multiple sentences. To implicitly in-

fer the answer type information, we propose a max-attentional question

aggregation mechanism that learns to identify the meaningful portions

of a question. Our proposed model achieves significant improvements

over prior work on three large-scale challenging QA datasets.

• Despite the progress in RC-based QA, current approaches su↵er from

an impractical assumption that every question has a valid answer in the

associated passage. Knowing whether a valid answer exists in a given

text passage plays an important role in practical QA systems. We pro-

pose a nil-aware answer span extraction framework to return in a single

6



step an exact answer span to a question or Nil, depending on whether

a valid answer exists or not. In addition to our previously proposed

RC model (mentioned earlier in the first contribution), this framework

can be readily integrated with many other recently published neural

machine comprehension models. In total, we extend four machine com-

prehension models with our proposed framework and show that they

achieve significantly better results compared to the other pipeline and

threshold-based models.

• RC-based QA tasks share the single-turn setting of answering questions

with the help of associated text passages, where the questions and their

answers are independent of each other. However, humans naturally seek

answers via conversation, which carries over context through the con-

versation flow. Although there is a surge in interest in conversational

QA, recently proposed conversational QA systems lack the ability to

ask a follow-up clarification question when a given question is under-

specified. We propose a conversational QA system that can predict

the answer to a question in a conversation, and has the ability to ask a

follow-up clarification question if the original question is underspecified.

We propose a pipeline approach that consists of an answer prediction

model and a follow-up question generation model. The answer predic-

tion model is based on a dual co-attention network while the follow-up

question generation model is based on a sequence-to-sequence neural

network enhanced with a copying mechanism. Experiments on the chal-

lenging ShARC dataset indicates that our proposed approach achieves
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competitive performance. In contrast to a recently proposed ShARC-

specific model, our proposed approach is generic and can be applied to

any conversational question answering task which requires clarification

question generation.

1.3 Organization of the Thesis

This thesis is organized as follows. In Chapter 2, we give an overview of re-

lated work on question answering. In Chapter 3, we describe the background

and our proposed approach for answer span extraction in RC-based QA. In

Chapter 4, we describe how several QA models developed for RC can be

extended with our unified nil-aware answer extraction framework. In Chap-

ter 5, we present our approach for conversational RC-based QA. Finally, we

conclude the thesis in Chapter 6. Our work presented in Chapters 3 and 4

have been published as full papers in AAAI 2018 (Kundu and Ng, 2018a)

and EMNLP 2018 (Kundu and Ng, 2018b) respectively.
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Chapter 2

Related Work

This chapter presents a brief history of Question Answering (QA) and sum-

marizes the related work on the current question answering systems.

2.1 Early QA Work

Research on QA spanned a history from closed-domain QA (Green et al.,

1961; Simmons, 1965; Weizenbaum, 1966; Woods, 1973) to open-domain QA

(e.g., Text REtrieval Conference TREC1 1999-2007). It attempts to deal with

a wide range of question types including fact, list, definition, how, why, hy-

pothetical, semantically-constrained, and cross-lingual questions. The chal-

lenges posed by answering di↵erent types of questions have been addressed by

using a large variety of techniques, such as shallow and deep parsing, keyword

extraction, named entity extraction, ontology, question typing, and machine

learning of answer patterns appropriate to question forms (Hirschman and

1https://trec.nist.gov
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Gaizauskas, 2001; Burger et al., 2001; Ng et al., 2001; Harabagiu and Hickl,

2006).

From the 1960s to the 1990s, most QA systems were developed to an-

swer questions in a restricted domain. In the 1960s, BASEBALL answered

questions about the US baseball league (Green et al., 1961). The information

about every baseball event was stored in a list structure database and the

question was also transformed into a list structure. Simmons (1965) surveyed

fifteen QA systems including conversational question answerers and front-

ends to databases. Most of these systems depended on semantic structure

construction and canonical form matching in the databases. Weizenbaum

(1966) developed ELIZA as a human-computer conversation system based

on keywords and pattern matching. However, ELIZA was not robust enough

to answer open-domain questions. From the 1970s, the development of com-

prehensive theories in computational linguistics led to the development of

ambitious projects in text comprehension and QA. During this period, sys-

tems usually relied on human experts to hand-craft knowledge in a restricted

domain. For instance, LUNAR was introduced which was about lunar science

projects (Woods, 1973). LUNAR answered questions about moon rocks and

soil gathered by the Apollo 11 mission. Another example was the Unix Con-

sultant (UC), developed by Robert Wilensky at U.C. Berkeley in the 1980s

(Wilensky, 1984). The system was able to answer questions related to the

Unix operating system. It had a comprehensive hand-crafted domain-specific

knowledge base, and it aimed at phrasing the answer to accommodate various

types of users. Another noteworthy project was LILOG, a text-understanding

system that operated on a German city tourism information domain (Bläsius,
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1991).

In subsequent developments, QA systems aimed at making linguistic anal-

ysis of the questions to capture the intended requirements in a natural way.

For instance, MASQUE (Androutsopoulos et al., 1993) represented natu-

ral language questions in a logic representation, and then it translated each

logic query into a database query for retrieving the intended information

from databases (Androutsopoulos et al., 1995). FAQ FINDER (Burke et al.,

1997) matched the questions with a question list compiled in a knowledge

base through statistical similarity and semantic similarity. Another QA Sys-

tem, QUARC, developed by Rilo↵ and Thelen (2000), classified questions

into di↵erent wh-types and derived their expected answer types through the

use of lexical and semantic clues. Later, the focus of developing QA systems

was shifted toward open domain QA.

2.2 TREC Question Answering

Since 1999, the annual Text REtrieval Conference (TREC) included a QA

track which ran until 2007. This was the first large-scale open-domain QA

system evaluation. The task of this track is to provide answers to natural

language questions instead of only retrieving relevant documents. The an-

swers to the questions are expected to be found from a large corpus of text.

This competition had a significant impact on open-domain QA research and

QA system architecture (Burger et al., 2001; Ferrucci et al., 2010).

Participants in the TREC-8 QA track (Voorhees, 1999) were given a set

of factoid questions and they needed to return a ranked list of (document
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id, answer string) pairs for each question. Two types of evaluation were

performed based on the length of the answer string. An answer string could

be up to 50 bytes or 250 bytes. The evaluation was done by human assessors.

The assessors were instructed to make a binary decision based on whether the

answer is present in the answer string or not. Mean reciprocal rank (MRR)

was used for evaluation (Voorhees, 1999). Most participants used a three-

step system: query formulation, candidate document retrieval from TREC

document collection, and candidate answer extraction.

The overall structure of TREC-9 QA track (Voorhees, 2000) was similar

to TREC-8, except that the document collection and the question set were

larger, and the questions were taken from di↵erent sources. Similar to TREC-

8, most of the participating teams followed the same three-step architecture

to develop the systems. All the participating systems mostly improved their

systems by adopting new techniques in these three components. The evalu-

ation was also similar to TREC-8, using the MRR score. Additionally, the

competing systems had a more robust question type classifier to tackle the

reformulation of the same questions. The best systems in TREC-9 QA track

were able to achieve 58% and 76% MRR scores for 50-byte and 250-byte

answer length categories respectively.

The TREC 2001 QA track (Voorhees, 2001) was focused on three di↵erent

tasks: the main task, list task, and context task. The main task was similar

to the QA task in 2001, except that the answer length was limited to 50

bytes only. Additionally, the answers to some questions could not be found

in the document collection (in which case NIL was considered as the correct

answer). Most of the participating systems followed the same three-step ar-

12



chitecture consisting of query reformulation, document retrieval, and answer

candidate extraction. Soubbotin (2001) obtained the best result in the main

task. First, multiple overlapping answer-string candidates were created by

selecting documents containing the query terms. Then, the system searched

predefined patterns for di↵erent textual expressions. Finally, they ranked the

answer candidates based on the presence of certain predefined patterns. In

addition to the main task, a context task was added where the systems were

required to answer a set of related questions about the same context. A list

task was also added where the systems were required to provide a list of en-

tities as the answer for a given question. However, most of the participating

teams applied the same system designed for the main task without any major

modifications.

The main task in TREC 2002 (Voorhees, 2002) was similar to 2001 except

that the participating teams were asked to return only one exact answer

instead of a ranked list of answers. Answer strings that contained redundant

information or missed some portion of the answer were marked as incorrect

by the assessors. The context task was excluded in TREC 2002. LCC’s QA

system submitted by Moldovan et al. (2002) performed best in both the

main task and list task, outperforming the second-best system by a large

margin. They used a customized parser to parse both the question and the

retrieved documents, followed by transforming them into their corresponding

logic forms. They used lexical chains to further transform the logic forms to

axioms to incorporate semantic information about related concepts. Finally,

a logic prover was used to rank the candidate answers guided by these axioms.

In TREC 2003 (Voorhees, 2003), the main task was divided into three
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subtasks: factoid, list, and definition. To properly judge the answer quality

of a definition question, a more rigorous evaluation criterion was introduced.

In addition to the main task, a passage task was also introduced in this year

to measure the participating systems’ ability to retrieve short document ex-

tracts. Harabagiu et al. (2003) performed best in factoid and list questions.

They improved their system by including a named entity recognizer to de-

termine question types. After obtaining a set of potential candidate answers,

they used a logic prover to remove incorrect candidate answers through ab-

ductive reasoning. BNN’s QA system (Xu et al., 2003) achieved the best

performance in definition questions using kernel facts. The QA system sub-

mitted from National University of Singapore (Zhang and Lee, 2003) also

achieved good performance in all the tasks.

The main task of the TREC 2004 QA track (Voorhees, 2004) was similar

to 2003, except that di↵erent types of questions were grouped together based

on a specific target. The target can be viewed as a topic description for

a particular group of questions. Hence, the participating systems were also

required to deal with references and ellipses in these questions. Evaluation

criteria were the same as the previous year. LCC’s QA system (Moldovan

et al., 2004) achieved the best result in the main task and the list task. The

QA system from National University of Singapore (Cui et al., 2004) achieved

the best performance in the definition task, and also performed quite well in

the other two tasks.

The TREC 2005 QA track (Voorhees and Dang, 2005) consisted of three

tasks: the main task, document ranking task, and relationship task. The main

task was similar to that in 2004. The document ranking task was introduced
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to evaluate the performance of the document retrieval module of the QA

systems. In the relationship task, a topic was provided as the context of a

question. The participating systems were expected to provide information

nuggets as evidence for the answer. LCC’s QA system (Harabagiu et al.,

2005) performed the best in the main task. Litkowski (2005) performed the

best in the relationship task. The QA system from National University of

Singapore (Sun et al., 2005) performed quite well in both the main task and

the document ranking task.

The TREC 2006 QA track (Dang et al., 2006) consisted of two tracks:

the main task and a complex interactive task. The main task was similar to

that in 2005. In the complex interactive task, each question consisted of a

template part and a narrative part. The template part was a fixed question

template with some free named entity slots (also called facets) that varied

for each question. The narrative part included a few sentences describing

the information need. A QA system from LCC (Moldovan et al., 2006) per-

formed the best in both factoid task and list task. The QA system from

the University of Edinburgh (Kaisser et al., 2006) was developed based on

two complementary approaches and performed quite well on the list task.

An automatic QA system from MIT (Katz et al., 2006) achieved impressive

performance on the complex interactive QA task.

Similarly, the TREC 2007 QA track (Dang et al., 2007) consisted of a

main task and a complex interactive question answering task. In the main

task, in addition to news articles, the document collection for answer retrieval

was augmented with blogs. As a result, the QA systems were required to

deal with noisy blog texts. The complex relation task remained the same.
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Moldovan et al. (2007) performed the best in the main task using question

type-specific language models. Zhang et al. (2007) performed quite well on

the complex interactive QA task by using a heuristic and a machine learning

approach.

2.3 Community Question Answering

Community Question Answering (CQA) on web forums began to become

popular with the introduction of several social network platforms such as

Yahoo! Answers2, Quora3, Stack Overflow4, etc. In community forums, a

user can freely ask any questions and expect a variety of answers from other

users. It takes e↵ort for a user to read and understand all the answers of dif-

ferent quality. Often, a popular question receives hundreds of answers, and

it is di�cult for a user to read them all. Hence, it is beneficial to develop

automated tools which can go through these CQA sites and automatically

provide an answer for a given new question. The first step to automatically

answer questions is to retrieve a set of questions that is similar to the user’s

question. This set of similar questions is then used to extract possible mean-

ingful answers.

Question-question similarity

When a user asks a question in a community QA service, the user typically

needs to choose a category label for the question from a predefined hierar-

chy of categories. Hence, each question in a community QA archive has a

2https://answers.yahoo.com/
3https://www.quora.com/
4https://stackoverflow.com/
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category label and questions in community QA services are organized into

hierarchies of categories. The questions in the same category or subcate-

gory usually relate to the same general topic. Question-question similarity

is typically addressed using di↵erent textual similarity measures. Several re-

searchers have proposed methods using explicit question topic modeling, such

as using question focus (Duan et al., 2008) or using a graph of topic terms

(Cao et al., 2008). Researchers have also tackled this task with implicit ques-

tion topic modeling. Cao et al. (2009) proposed a framework that is capable

of exploiting classifications of questions in community QA archives for im-

proving question search. They used a language model with smoothing based

on the category structures of Yahoo! Answers. Zhang et al. (2014) used an

LDA topic language model that matches the questions both at the term level

and topic level. Another important type of approach is syntactic structure-

based methods. Wang et al. (2009) proposed a retrieval model based on the

similarity of syntactic trees. They extensively studied the structural repre-

sentations of questions to encode lexical, syntactic and semantic features into

the model. Notably, their model does not rely on training, and it is shown to

be robust against grammatical errors as well. Da San Martino et al. (2016)

studied the impact of several features for question ranking in community

QA, such as bag-of-words models, syntactic tree kernels, and rank features.

Recently, several neural network-based models have also been proposed for

question-question similarity detection, e.g., dos Santos et al. (2015) used con-

volutional neural networks (CNN), Romeo et al. (2016) used long short-term

memory (LSTM) networks with neural attention, and Lei et al. (2016) used

a combined network of CNN and recurrent neural network (RNN).
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Question-answer similarity

Question-answer similarity is a well-researched subtask in the general Ques-

tion Answering (QA) task. Many methods have been proposed in the past

that try to match the syntactic structure of a question to that of the candi-

date answer. Wang et al. (2007) proposed a probabilistic quasi-synchronous

grammar to learn the syntactic transformation from a question to a candidate

answer. Heilman and Smith (2010) proposed a tree edit distance (TED)-based

algorithm to learn tree transformation in pairs. Wang and Manning (2010)

proposed a probabilistic model to learn tree-edit operations on dependency

parse trees. Yao et al. (2013) derived features from TED and used a linear

chain conditional random field (CRF) to learn associations between ques-

tions and candidate answers. Recently, many methods have been proposed

which use neural network models for answer sentence selection (Feng et al.,

2015; Severyn and Moschitti, 2015; Wang and Nyberg, 2015; Filice et al.,

2016; dos Santos et al., 2016; Mohtarami et al., 2016; Yang et al., 2016; Bian

et al., 2017). Tan et al. (2015) proposed to use a neural attention mechanism

with bidirectional LSTMs to generate better candidate answer representa-

tions given a question. Tymoshenko et al. (2016) combined neural networks

with syntactic kernels for question-answer similarity modeling.

In question-answer similarity task, it always assumes that there exists a

list of candidate answers where each answer is a single sentence. Although

this might be useful in community QA, it is not practical for general QA

systems, where the answers are not always full sentences, i.e., they are often

text fragments.
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2.4 Reading Comprehension-based QA

In this section, we provide an overview of reading comprehension (RC)-based

QA. In the RC task, a machine reads a story (e.g., a text passage or docu-

ment), and demonstrates its understanding by answering questions about the

story. Since questions can be devised to query any aspect of text comprehen-

sion, the ability to answer questions in the reading comprehension scenario

requires a high degree of natural language understanding. The history of

building machine reading comprehension systems dates back to many years

ago. One of the most notable early works is the QUALM system developed

by Lehnert (1977). In QUALM, Lehnert (1977) devised a theory of question

answering and focused on the importance of the context of the story in re-

sponding to questions. Although this early work set a strong vision for natural

language understanding, the actual system built at that time was limited to

hand-coded scripts, and di�cult to generalize to broader domains. Due to the

complexity of the problem, research on RC-based QA was mostly neglected in

the 1980s and 1990s. In the late 1990s, there was some small revival of interest

in RC-based QA. Hirschman et al. (1999) created a reading comprehension

dataset, followed by a Workshop on Reading Comprehension Tests as Evalu-

ation for Computer-based Understanding Systems at ANLP/NAACL 2000.

The dataset consists of 60 stories for development and 60 stories for testing of

3rd to 6th grade material. This dataset primarily contains who, what, when,

where, and why questions. It only requires systems to return a sentence that

contains the right answer. The systems developed at this stage were mostly

rule-based bag-of-words approaches with shallow linguistic processing such
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as stemming, semantic class identification, and pronoun resolution in the

DEEP-READ system (Hirschman et al., 1999), or manually generated rules

based on lexical and semantic correspondence (Rilo↵ and Thelen, 2000), or

their combinations (Charniak et al., 2000). However, Ng et al. (2000) used

a machine learning approach for answering reading comprehension questions

and evaluated their approach on the same dataset.

After 2010, there were many e↵orts to formulate RC-based QA as a super-

vised learning problem. Researchers collected human-labeled training exam-

ples in the form of (passage, question, answer) triples for training statistical

models that learn to map a passage and question pair into their correspond-

ing answer. The existing reading comprehension tasks can be divided into

four categories depending on the answer type:

• Multiple choice: In this category, the correct answer is chosen from a

candidate set of hypothesized answers. Typically, accuracy is used for

evaluating models in this task.

• Cloze style: In this case, the question contains a placeholder, also

known as a fill-in-the-blank question. In these tasks, the systems must

guess which word or entity completes the question, based on the pas-

sage, and the answer is either chosen from a pre-defined set of choices or

the full vocabulary. Similar to the previous category, accuracy is used

for evaluation.

• Span extraction: In this category, the answer must be a single con-

tinuous span in the associated passage. For these tasks, typically two

evaluation metrics are used: (1) Exact Match assigns full credit 1 if
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the predicted answer exactly matches the gold answer, and 0 other-

wise, and (2) F1 score computes the average word overlap between

predicted and gold answers. It treats the predicted and gold answers

as bags of tokens, and compute their F1.

• Free-form answer: The last category allows the answer to be any

free-text form, i.e., a word sequence of arbitrary length. In these tasks,

typically standard evaluation metrics for natural language generation

tasks are used, e.g., BLEU (Papineni et al., 2002), Meteor (Banerjee

and Lavie, 2005), and ROUGE (Lin, 2004).

Two notable datasets created after 2010 are MCTest (Richardson et al.,

2013) and ProcessBank (Berant et al., 2014). In the MCTest dataset, Richard-

son et al. (2013) collected 660 fictional stories, with 4 multiple choice ques-

tions per story where each question is associated with 4 candidate answers

and one of them is correct. ProcessBank is designed to answer binary-choice

questions in a passage describing a biological process and requires an un-

derstanding of the relations between entities and events in the process. The

ProcessBank dataset consists of 585 questions spread over the 200 passages.

These datasets have inspired a strand of machine learning models (Sachan

et al., 2015; Narasimhan and Barzilay, 2015; Wang et al., 2015). These mod-

els were mostly developed on top of a max-margin learning framework us-

ing a rich set of hand-engineered linguistic features, including syntactic de-

pendencies, semantic frames, coreference resolution, discourse relations, and

word embeddings. Although these models provided modest improvements

over rule-based models, they have several limitations. For instance, it is of-
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ten very di�cult to construct e↵ective hand-engineered features when the

evidence is spread over the passage. Further, these models relied heavily on

existing linguistic tools such as dependency parsers and semantic role labeling

systems. However, these linguistic representation tasks often inject additional

errors and o↵-the-shelf tools are often trained from one single domain and

su↵er from generalization problems in a practical scenario.

This field witnessed a significant change when Hermann et al. (2015)

proposed an automatic way of creating large-scale labeled training data for

training machine reading comprehension models. They created two large-

scale cloze style datasets, namely CNN and DailyMail. They also proposed

a neural network model, namely Attentive Reader, and demonstrated that it

outperformed symbolic NLP approaches by a large margin. In their experi-

ments, the Attentive Reader achieved 63.8% accuracy while symbolic NLP

systems obtained 50.9% at most on the CNN dataset. Hill et al. (2016) also

created a large-scale cloze-style Children’s Book Test dataset, designed to

measure directly how well models can exploit a wider linguistic context.

Although several models were proposed using the advanced neural net-

work architectures after the introduction of the CNN / DailyMail dataset,

Chen et al. (2016) showed that the dataset requires less reasoning than previ-

ously thought, and conclude that performance on this dataset is almost satu-

rated. Subsequently, Rajpurkar et al. (2016) released a large and high-quality

span extraction-based SQuAD dataset, where the answers are free-form text

fragments unlike in the previous datasets. The answers in SQuAD often

include non-entities and can be much longer phrases, making the SQuAD

dataset more challenging than previous cloze-style datasets. Most of the pre-
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viously released datasets are closed-world, i.e., the questions and answers are

formulated given the text passages. Hence, the answer spans can often be ex-

tracted by simple word and context matching without requiring any deeper

understanding. To address these weaknesses, several other datasets were cre-

ated such as NewsQA (Trischler et al., 2017), TriviaQA (Joshi et al., 2017),

SearchQA (Dunn et al., 2017), etc. However, most of these datasets do not

consider nil questions, i.e., where no valid answer is present in the associated

passage for a given question. Trischler et al. (2017) first came up with a large-

scale RC dataset which includes nil questions. More recently, Rajpurkar et al.

(2018) augmented the SQuAD dataset by including unanswerable questions.

The reading comprehension field has become one of the most active fields

in NLP today and it has further evolved. Following the theme of creat-

ing large-scale and more challenging reading comprehension datasets, sev-

eral other datasets have been created recently from a variety of sources. For

instance, Lai et al. (2017) created the RACE dataset. RACE is a multiple-

choice RC dataset collected from the English exams for middle-school and

high-school Chinese students. All the questions and answer candidates were

created by experts. As a result, the dataset is more di�cult than many ex-

isting RC datasets. Recently, several datasets have been created that re-

quire multi-hop reasoning (Welbl et al., 2018; Khashabi et al., 2018; Yang

et al., 2018). In multi-hop RC-based QA, a system needs to combine infor-

mation from multiple sentences or passages in order to arrive at the answer.

Nguyen et al. (2016) introduced a large-scale machine reading comprehension

dataset (MS MARCO), which encourages systems to generate free-form an-

swers. To encourage progress on deeper comprehension of language, Kočiský
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et al. (2018) presented a new dataset (NarrativeQA) and a set of tasks in

which the reader must give free-form answers to questions about stories by

reading entire books or movie scripts.

2.5 Reading Comprehension Using Deep

Neural Networks

In recent years, the QA research community has witnessed some significant

progress. Benchmark datasets play an important role in this recent progress in

reading comprehension and question answering research. Most of the current

top-performing systems on RC-based QA tasks are built on deep end-to-end

neural networks. These models usually start from the idea of representing

every single token in the associated passage and the question as a dense

vector, passing through several modeling or interaction layers, and finally

making predictions. All the model parameters can be optimized jointly using

the gradient descent algorithm or its variants. In contrast to the feature-

engineered classifiers, neural RC models have several advantages:

• Deep neural network-based models do not require labor-intensive, man-

ual engineering of features. Therefore, the models are conceptually sim-

pler.

• In conventional feature-engineered models, features are usually very

sparse and do not generalize well. Deep neural network-based models

alleviate the sparsity issue by using dense word embeddings. They also

generalize well as the features are learned automatically.
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• Deep neural network-based models learn all the features on their own.

They do not rely on any downstream language processing modules, such

as dependency parsing and coreference resolution. This can potentially

avoid additional errors due to the intermediate feature extractors, such

as a dependency parser.

Since the release of the large-scale cloze-style datasets, several end-to-

end neural network models (Hermann et al., 2015; Hill et al., 2016; Kadlec

et al., 2016; Sordoni et al., 2016; Dhingra et al., 2017; Kobayashi et al., 2016;

Shen et al., 2017a; Cui et al., 2017; Chen et al., 2016) have been proposed.

Hermann et al. (2015) first introduced an attention mechanism into machine

reading comprehension. Hill et al. (2016) proposed a window-based memory

network for the Children’s Book Test dataset. Kadlec et al. (2016) proposed

the attention sum reader (ASR) which improved the state of the art by a

significant margin. ASR first calculates the attention weight for every word

in the passage and then chooses the answer which has the maximum sum

of attention weights. The attention for every word in the document is cal-

culated by encoding the question and document by separate bi-directional

LSTMs (Hochreiter and Schmidhuber, 1997). Sordoni et al. (2016) proposed

an alternating attention mechanism that allows a fine-grained exploration of

both the question and the passage. Gated attention (GA) reader (Dhingra

et al., 2017) extends the AS reader and performs multiple hops over the input

passage representation. It uses the same pointer sum attention mechanism as

ASR in the output layer to obtain the distribution over candidate answers.

Kobayashi et al. (2016) proposed the dynamic entity representation (DER)

network, which explicitly reads dynamic meaning representations for enti-
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ties by accumulating information around the entities as it keeps reading a

passage. Shen et al. (2017a) proposed the ReasoNet model which iteratively

infers the answer with a dynamic number of reasoning steps and is trained

with reinforcement learning. Cui et al. (2017) proposed a simple but e↵ective

attention-over-attention mechanism to capture the interaction between pas-

sage and question. Chen et al. (2016) proposed the Stanford attentive reader

(SAR) which is primarily based on the idea of ASR. They also explained that

the cloze-style task on the CNN/DailyMail dataset is not challenging enough

for the recently developed advanced neural network models and hence, ad-

vanced models had to be evaluated on more realistic datasets.

Since the release of answer span extraction-based datasets (Rajpurkar

et al., 2016; Trischler et al., 2017; Joshi et al., 2017), many end-to-end neural

network models were proposed. Models based on the idea of chunking and

ranking include Yu et al. (2016) and Lee et al. (2016). Multiple models (Wang

and Jiang, 2017; Yang et al., 2017; Trischler et al., 2017; Xiong et al., 2017;

Seo et al., 2017; Wang et al., 2016a; Weissenborn et al., 2017; Wang et al.,

2017; Pan et al., 2017; Shen et al., 2017b; Chen et al., 2017) were proposed

which are based on the idea of a pointer network (Vinyals et al., 2015). Wang

and Jiang (2017) used a Match-LSTM to encode the question and passage

together and a boundary model determined the beginning and ending bound-

ary of an answer. Yang et al. (2017) used a fine-grained gating mechanism

to capture the correlation between a passage and a question. Trischler et al.

(2017) reimplemented Match-LSTM for the NewsQA dataset and proposed

a faster version of it. Xiong et al. (2017) used a co-attentive encoder fol-

lowed by a dynamic decoder to iteratively estimate the boundary pointers.
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Seo et al. (2017) proposed a bi-directional attention flow approach to capture

the interactions between passages and questions. Wang et al. (2016a) pro-

posed a multi-perspective context matching approach that explicitly matches

the contextual embeddings of the passage with the question from multiple

perspectives. Weissenborn et al. (2017) proposed a simple context matching-

based neural encoder and incorporated word overlap and term frequency

features to estimate the start and end pointers. Wang et al. (2017) proposed

a gated self-matching approach which encodes the passage and question to-

gether using a self-matching attention mechanism. Pan et al. (2017) proposed

a memory network-based multi-layer embedding model. Shen et al. (2017b)

proposed a reasoning network that produces the answer after multiple itera-

tions of the comprehension process. Chen et al. (2017) proposed a multi-layer

recurrent neural network model for answer span extraction. However, most of

these models primarily rely on simple context matching without the ability

to capture long-range dependency.

Moreover, most of the recent work always assumes that a valid answer can

always be found in the associated text passage for a given question. However,

in practice, there may not exist any valid answer in the associated passage

for a question (referred to as nil questions). Although SQuAD (Rajpurkar

et al., 2016) became very popular and served as a good test set to develop

advanced end-to-end neural network architectures, it does not include any

nil questions. In SQuAD, questions and answers are formulated given text

passages. Hence, a valid answer can always be found in the associated passage

for every question created. In practical QA, it is critical to decide whether

or not a passage contains a valid answer for a given question. Subsequently,
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Trischler et al. (2017) proposed a more challenging and realistic dataset,

NewsQA, where the questions were formed using CNN article summaries

without accessing the original full texts. As such, some questions have no

valid answers in the associated passages. However, prior models for NewsQA

excluded nil questions during evaluation. We focus on developing QA systems

that extract an answer for a question if and only if the associated passage

contains a valid answer. Otherwise, they are expected to return Nil as the

answer. Very recently, Rajpurkar et al. (2018) augmented the SQuAD dataset

with unanswerable questions which is also known as SQuAD 2.0.

2.6 Multi-turn Conversational Reading

Comprehension-based QA

So far, we have discussed single-turn QA, where a machine provides an answer

for a single question. In this section, we provide an overview of multi-turn

conversational QA.

Conversational question answering is directly related to dialog. Building

conversational agents or dialog systems to converse with humans in natural

language is one of the major objectives of natural language understanding. di-

alog systems can be broadly classified into two categories: task-oriented, and

chit-chat dialog agents. Task-oriented dialog systems are designed for one

particular task and set up to have short conversations (e.g., IT help desk,

booking a flight or making a restaurant reservation). In contrast, chit-chat

dialog systems do not have a specific goal and aim for extended, casual con-
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versations. Usually, the conversations are longer for these systems. Answering

questions is also a core task of dialog systems since one of the most common

needs for humans to interact with dialog agents is to seek information and

ask questions of various topics. QA-based dialog techniques have been de-

veloped extensively in many automated virtual personal assistant systems,

either based on structured knowledge bases or unstructured text collections.

Dialog systems in recent research papers are mostly built on top of deep

neural networks.

In recent years, several datasets and neural models have been developed

to improve dialog systems (Young et al., 2013; Shawar and Atwell, 2007).

Many data-driven machine learning methods have been shown to be e↵ective

for tasks relevant for dialog such as dialog policy learning (Young et al.,

2013), dialog state tracking (Henderson et al., 2013; Williams et al., 2013;

Kim et al., 2016), and natural language generation (Sordoni et al., 2015; Li

et al., 2016a; Bordes et al., 2017). Most of the recent dialog systems are either

not goal-oriented (e.g., simple chit-chat bots), or domain-specific if they are

goal-oriented (e.g., IT help desk, booking a flight or making a restaurant

reservation). While the dialog systems, such as chit-chat bots, are developed

to generate any free-form text, we particularly focus on clarification question

generation in a more complex conversational QA setting.

Recently, there has been a surge of interest in conversational QA. Saha

et al. (2018) released a Complex Sequential Question Answering (CSQA)

dataset which combines the two tasks of answering factoid questions by in-

ference over a knowledge graph and learning conversations through a series

of interrelated QA pairs. In addition to the dataset, Saha et al. (2018) pro-
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posed a sequence-to-sequence model, which uses a hierarchical encoder and

a key-value memory network for encoding, and then uses a recurrent neural

network as the decoder to produce answers. Guo et al. (2018) introduced a

dialog memory management module that leverages historical entities, pred-

icates, and action subsequences when generating the logical form for an ut-

terance. Recently, Choi et al. (2018) released a conversational QA dataset,

namely question answering in context (QuAC), which is developed over plain

text passages and mimics a student-teacher interactive scenario. Elgohary

et al. (2018) released the QBLink dataset for sequential question answer-

ing in an open-domain setting. QBLink is a sequential question answering

dataset collected from Quiz Bowl tournaments, where a sequence contains

multiple related questions. These questions are related to the same concept

while not focusing on the dialog aspects (e.g., coreference). Zhou et al. (2018)

created another chit-chat style dialog dataset based on a single movie-related

Wikipedia article, in which two workers are asked to chat about the content.

Reddy et al. (2019) released a large-scale CoQA dataset for building conver-

sational QA systems. In contrast to prior datasets, CoQA contains free-form

answers. Since the release of CoQA, many systems evaluated on this dataset

have appeared on the leaderboard5. Zhu et al. (2018) proposed a model that

fuses the conversation history into traditional reading comprehension models.

It relies on both inter-attention and self-attention to comprehend the con-

versation context and extract relevant information from the passage. Huang

et al. (2019) proposed the FlowQA model that can incorporate intermediate

representations generated during the process of answering previous questions,

5https://stanfordnlp.github.io/coqa/
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through an alternating parallel processing structure. Yeh and Chen (2019)

proposed the FlowDelta model that can explicitly capture the information

gain through dialog reasoning in order to allow the model to focus on more

informative cues.

Although there has been a significant advancement in the area of con-

versational QA, most of the prior works only focus on answering questions.

They do not possess the capability to ask a follow-up clarification question if

a question in the conversation is underspecified. Saeidi et al. (2018) created

the ShARC dataset from regulatory texts (e.g., tra�c rules, tax and visa

regulations, etc) for conversational QA. ShARC requires a system to ask a

follow-up clarification question if a question is underspecified in a conversa-

tion. In this thesis, we focus on the ShARC dataset to develop a conversa-

tional QA system that can answer questions and is able to ask clarification

questions when the posed questions are underspecified.

2.7 Summary

In summary, we have provided an overview of the related work in di↵er-

ent types of QA. We provided a brief history of early QA work. We also

presented a detailed overview of TREC QA tasks. We briefly described the

related work in community QA. Next, we provided a thorough description of

single-turn reading comprehension-based QA tasks and proposed models. We

also present the related work in multi-turn conversational QA. In the follow-

ing chapters, we present our proposed models for single-turn and multi-turn

reading comprehension-based QA tasks.
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Chapter 3

A Question-Focused

Multi-Factor Attention

Network for Question

Answering

In this chapter, we propose a novel end-to-end question-focused multi-factor

attention network for answer extraction. Multi-factor attentive encoding us-

ing tensor-based transformation aggregates meaningful facts even when they

are located in multiple sentences. To implicitly infer the answer type, we

also propose a max-attentional question aggregation mechanism to encode

a question vector based on the important words in a question. During pre-

diction, we incorporate sequence-level encoding of the first wh-word and its

immediately following word as an additional source of question type infor-
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mation. Our proposed model achieves significant improvements over the best

prior state-of-the-art results on three large-scale challenging QA datasets,

namely NewsQA, TriviaQA, and SearchQA. In order to make it easier for

other researchers to replicate our results, we have made the source code of

our system publicly available1.

The rest of this chapter is organized as follows. We start with some pre-

liminary descriptions of some key elements in modern neural network-based

NLP models in Section 3.1. Then, we provide the background of this work in

Section 3.2. The problem definition is given in Section 3.3. Then, we provide

the details of our approach in Section 3.4, followed by visualization of our

proposed components in Section 3.5. We present and discuss the results of

our experimental evaluation in Section 3.6. In Section 3.7, we provide a brief

overview of more recent advances in RC-based QA. Finally, we summarize

this chapter in Section 3.8.

3.1 Preliminaries

In this section, we outline a minimal set of elements and the key ideas which

form the basis of modern deep neural network-based NLP models.

3.1.1 Word Embedding

Prior to deep learning, it was common to represent a word by a one-hot

vector, i.e., each word is represented by a high-dimensional, sparse vector

where only one entry of that vector is 1 and the remaining entries are 0s.

1https://github.com/nusnlp/amanda
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The primary drawback of this one-hot representation is that it does not cap-

ture any semantic similarity between words. In deep neural network-based

models, each word is typically represented by a low-dimensional, real-valued

vector. Low-dimensional word embedding vectors help to capture the seman-

tic similarity between words to the extent that similar words can be encoded

as similar vectors in the geometric space.

The word embedding vectors can be e↵ectively learned from large unla-

beled text corpora, based on the assumption that words occurring in similar

contexts tend to have similar meanings. Representing a word as a vector has

a long history and has been finally popularized by recent scalable algorithms

and released sets of pre-trained word embeddings such as Word2Vec (Mikolov

et al., 2013), GloVe (Pennington et al., 2014), etc. They have become an in-

tegral part of modern deep learning-based NLP systems.

3.1.2 Recurrent Neural Network

Another important module is Recurrent Neural Network (RNN) to model

sentences, passages, or documents in many NLP tasks. RNNs are a class of

neural networks that are suitable for handling sequences of variable length.

Specifically, they apply a parameterized function recursively on a sequence

of words {x1,x2, . . . ,xT} to obtain a contextual encoding representation.

Mathematically, it can be represented as follows:

ht = f(ht�1,xt,�) , (3.1)
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where ht is the hidden vector representation for the tth word and � is a set

of trainable parameters.

In NLP tasks, typically each word in a sentence, passage, or document

is transformed into a real-valued vector through embeddings, i.e., xt 2 RD.

ht 2 RH is used to capture contextual information. A typical RNN can be

represented as:

ht = tanh(ht�1W
h + xtW

x + b) , (3.2)

where Wh
2 RH⇥H , Wx

2 RD⇥H , b 2 RH are learnable parameters. For

e↵ective optimization and to cope with the challenges of training an RNN

(e.g., vanishing gradient issue), several variants have been proposed. Notably,

Long-Short Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997) and

Gated Recurrent Unit (GRU) (Chung et al., 2014) are the two most com-

monly used RNNs recently. Arguably, LSTM is still the most competitive

RNN variant for many NLP applications today and also our default choice

for the neural models that we will describe in this thesis. Mathematically,

LSTMs can be formulated as follows:

it = �(ht�1W
ih + xtW

ix + bi)

ft = �(ht�1W
fh + xtW

fx + bf )

ot = �(ht�1W
oh + xtW

ox + bo)

gt = tanh(ht�1W
gh + xtW

gx + bg)

ct = ft � ct�1 + it � gt

ht = ot � tanh(ct) (3.3)
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where � represents the element-wise multiplication and � represents the

sigmoid function. Wih
,Wfh

,Woh
,Wgh

2 RH⇥H , Wix
,Wfx

,Wox
,Wgx

2

RD⇥H , and bi
,bf

,bo
,bg
2 RH are learnable parameters.

3.1.3 Attention Mechanism

Another important aspect of modern deep learning-based NLP models is the

use of attention mechanisms. Attention was first introduced in the sequence-

to-sequence models (Sutskever et al., 2014) for neural machine translation

(Bahdanau et al., 2015) and has later been extended to many other NLP

tasks. When we use RNNs to encode a sequence of words, typically, the

last hidden vector of the sequence is used to predict the label for a partic-

ular task. This requires the model to be able to compress all the necessary

information into a fixed-length vector, which causes an information bottle-

neck in improving performance (Cho et al., 2014). In contrast, the attention

mechanism looks at the hidden state vectors for all time steps and chooses

a subset of these vectors adaptively. A typical attention mechanism can be

mathematically illustrated as follows:

↵t =
exp (Attn(ht,g;�attn))P

T

t0=1
exp (Attn(ht0 ,g;�attn))

(3.4)

h̃ =
TX

t=1

↵tht , (3.5)

where ↵t is the attention score for the tth word and h̃ 2 RH is the aggregated

representation of the sequence of words. �attn is the set of learnable weight

parameters. Attn(.) represents the attention scoring function with respect to
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a key vector g 2 RH . It is a parametric function which can be chosen in

several ways, such as dot product, bilinear product, or one hidden layer of a

feed-forward layer (FFL):

AttnDOT(ht,g) = htg
> (3.6)

AttnBILIN(ht,g) = htWg> (3.7)

AttnFFL(ht,g) = (htW
h + gWg) w> (3.8)

where W 2 RH⇥H , Wh
2 RH⇥H , Wg

2 RH⇥H , and w 2 RH are learnable

parameters.

Intuitively, an attention mechanism computes a similarity score for every

contextual word representation, followed by applying a softmax function,

resulting in a discrete probability distribution over all the words. In this way,

↵ essentially captures which parts of the source sequence are more relevant.

h̃ aggregates over all the time steps with a weighted sum and can be used

for final prediction.

3.2 Background

In machine comprehension (MC)-based question answering (QA), a machine

is expected to provide an answer for a given question by understanding texts.

Recently, many neural models have been proposed which mostly focus on

passage-question interaction to capture the context similarity for extracting

a text span as the answer. However, most of the models do not focus on
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synthesizing evidence from multiple sentences and fail to perform well on

challenging open-world QA tasks such as NewsQA and TriviaQA. Moreover,

none of the models explicitly focus on question/answer type information for

predicting the answer. In practice, fine-grained understanding of the ques-

tion/answer type plays an important role in QA.

In this work, we propose an end-to-end question-focused multi-factor

attention network for document-based question answering (AMANDA), which

learns to aggregate evidence distributed across multiple sentences and iden-

tifies the important question words to help extract the answer. Intuitively,

AMANDA extracts the answer not only by synthesizing relevant facts from

the passage but also by implicitly determining the suitable answer type dur-

ing prediction. The key contributions of this work reported in this chapter

are:

• We propose a multi-factor attentive encoding approach based on tensor

transformation that can capture long-range dependency to synthesize

meaningful evidence across multiple sentences.

• To subsume fine-grained answer type information, we propose a max-

attentional question aggregation mechanism that learns to identify the

meaningful portions of a question. We also incorporate sequence-level

representations of the first wh-word and its immediately following word

in a question as an additional source of question type information.
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3.3 Problem Definition

Given a pair of passage and question, an MC system needs to extract a

text span from the passage as the answer. We formulate the answer as two

pointers in the passage, which represent the beginning and ending tokens

of the answer. Let P be a passage with tokens (P1,P2, . . . ,PT ) and Q be a

question with tokens (Q1,Q2, . . . ,QU), where T and U are the length of the

passage and question respectively. To answer the question, a system needs

to determine two pointers in the passage, b and e, such that 1  b  e  T .

The resulting answer tokens will be (Pb,Pb+1, . . . ,Pe).

3.4 Network Architecture

The architecture of the proposed question-focused multi-factor attention net-

work is given in Figure 3.1.

3.4.1 Word-level Embedding

Word-level embeddings are formed by two components: pre-trained word em-

bedding vectors from GloVe (Pennington et al., 2014) and convolutional neu-

ral network-based (CNN) character embeddings (Kim, 2014). Character em-

beddings have proven to be very useful for out-of-vocabulary (OOV) words.

We use a character-level CNN followed by max-pooling over an entire word

to get the embedding vector for each word. Prior to that, a character-based

lookup table is used to generate the embedding for every character and the

lookup table weights are learned during training. We concatenate these two
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Figure 3.1: Architecture of the proposed model. T , U , and H represent the
number of passage tokens, number of question tokens, and the number of
hidden units of the Bi-LSTMs, respectively. Hidden unit representations of
Bi-LSTMs, B and E, are shown to illustrate the answer pointers. Blue and
red arrows represent the start and end answer pointers respectively.

embedding vectors for every word to generate word-level embeddings.

3.4.2 Sequence-level Encoding

We apply sequence-level encoding to incorporate contextual information.

Let ept and eqt be the tth embedding vectors of the passage and the ques-

tion respectively. The embedding vectors are fed to a bi-directional LSTM

(BiLSTM) (Hochreiter and Schmidhuber, 1997). Considering that the out-
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puts of the BiLSTMs are unfolded across time, we represent the outputs as

P 2 RT⇥H and Q 2 RU⇥H for passage and question respectively. H is the

number of hidden units for the BiLSTMs. At every time step, the hidden

unit representation of the BiLSTMs is obtained by concatenating the hidden

unit representations of the corresponding forward and backward LSTMs. For

the passage, at time step t, the forward and backward LSTM hidden unit

representations can be written as:

�!
h p

t =
����!
LSTM(

�!
h p

t�1
, ept )

 �
h p

t =
 ����
LSTM(

 �
h p

t+1
, ept ) (3.9)

The tth row of P is represented as pt =
�!
h p

t ||
 �
h p

t , where || represents the

concatenation of two vectors. Similarly, the sequence level encoding for a

question is qt =
�!
h q

t ||
 �
h q

t , where qt is the tth row of Q.

3.4.3 Cartesian Similarity Layer

The similarity matrix is calculated by taking dot products between all pos-

sible combinations of sequence-level encoding vectors for a passage and a

question. Note that for calculating the similarity matrix, we do not intro-

duce any additional learnable parameters. The similarity matrix A 2 RT⇥U

can be expressed as:

A = P Q> (3.10)

Intuitively, Ai,j is a measure of the similarity between the sequence-level

encoding vectors of the ith passage word and the jth question word.
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3.4.4 Question-dependent Passage Encoding

In this step, we jointly encode the passage and question. We apply a row-wise

softmax function on the similarity matrix:

R = row-wise softmax(A) (3.11)

If rt 2 RU is the tth row of R 2 RT⇥U , then
P

U

j=1
rt,j = 1. Each row of R

measures how relevant every question word is with respect to a given passage

word. Next, an aggregated question vector is computed corresponding to each

sequence-level passage word encoding vector. The aggregated question vector

gt 2 RH corresponding to the tth passage word is computed as gt = rtQ.

The aggregated question vectors corresponding to all the passage words can

be computed as G = R Q, where gt is the tth row of G 2 RT⇥H .

The aggregated question vectors corresponding to the passage words are

then concatenated with the sequence-level passage word encoding vectors. If

the question-dependent passage encoding is denoted as S 2 RT⇥2H and st is

the tth row of S, then st = ct || gt, where ct is the sequence-level encoding

vector of the tth passage word (tth row of P). Then a BiLSTM is applied on

S to obtain V 2 RT⇥H , which is later used as input for multi-factor attentive

encoding.

3.4.5 Multi-factor Attentive Encoding

Tensor-based neural network approaches have been used in a variety of natu-

ral language processing tasks (Pei et al., 2014; Li et al., 2016b). We propose a
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multi-factor attentive encoding approach using tensor-based transformation.

In practice, recurrent neural networks fail to remember information when the

context is long. Our proposed multi-factor attentive encoding approach helps

to aggregate meaningful information from a long context with fine-grained

inference due to the use of multiple factors while calculating attention.

Let vi 2 RH and vj 2 RH represent the question-dependent passage

vectors of the ith and jth word, i.e., the ith and jth row of V. Tensor-based

transformation for multi-factor attention is formulated as follows:

fm
i,j

= vi W
[1:m]

f
v>
j

, (3.12)

where W[1:m]

f
2 RH⇥m⇥H is a 3-way tensor and m is the number of factors.

The output of the tensor product fm
i,j
2 Rm is a vector where each element

f
m

i,j,k
is a result of the bilinear form defined by each tensor slice W[k]

f
2 RH⇥H :

f
m

i,j,k
= vi W

[k]

f
v>
j
=

X

a,b

vi,aW
[k]

fa,b
vj,b (3.13)

8i, j 2 [1, T ], the multi-factor attention tensor can be given as F[1:m]
2

Rm⇥T⇥T . For every vector fm
i,j

of F[1:m], we perform a max pooling opera-

tion over all the elements to obtain the resulting attention value:

Fi,j = max(fm
i,j
) , (3.14)

where Fi,j represents the element in the ith row and jth column of F 2 RT⇥T .

Each row of F measures how relevant every passage word is with respect to

a given question-dependent passage encoding of a word. We apply a row-
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wise softmax function on F to normalize the attention weights, obtaining

F̃ 2 RT⇥T . Next, an aggregated multi-factor attentive encoding vector is

computed corresponding to each question-dependent passage word encoding

vector. The aggregated vectors corresponding to all the passage words, M 2

RT⇥H , can be given as M = F̃ V. The aggregated multi-factor attentive

encoding vectors are concatenated with the question-dependent passage word

encoding vectors to obtain M̃ 2 RT⇥2H . To control the impact of M̃, we apply

a feed-forward neural network-based gating method to obtain Y 2 RT⇥2H .

If the tth row of M̃ is m̃t, then the tth row of Y is:

yt = m̃t � sigmoid(m̃tW
g + bg) , (3.15)

where� represents element-wise multiplication.Wg
2 R2H⇥2H and bg

2 R2H

are the transformation matrix and bias vector respectively.

We use another pair of stacked BiLSTMs on top of Y to determine the

beginning and ending pointers. Let the hidden unit representations of these

two BiLSTMs be B 2 RT⇥H and E 2 RT⇥H . To incorporate the dependency

of the ending pointer on the beginning pointer, the hidden unit representation

of B is used as input to E.

3.4.6 Question-focused Attentional Pointing

Unlike previous approaches, our proposed model does not predict the answer

pointers directly from contextual passage encoding or use another decoder

for generating the pointers. We formulate a question representation based on

two parts:
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• max-attentional question aggregation (qma)

• question type representation (qf )

qma is formulated by using the similarity matrix A and the sequence-level

question encoding Q. We apply a maxcol operation on A which forms a row

vector whose elements are the maximum of the corresponding columns of A.

We define k 2 RU as the normalized max-attentional weights:

k = softmax(maxcol(A)) (3.16)

where softmax is used for normalization. The max-attentional question rep-

resentation qma 2 RH is:

qma = k Q (3.17)

Intuitively, qma aggregates the most relevant parts of the question with re-

spect to all the words in the passage.

qf is the vector concatenation of the representations of the first wh-word

and its following word from the sequence-level question encoding Q. The set

of wh-words we used is {what, who, how, when, which, where, why}. If qtwh

and qtwh+1 represent the first wh-word and its following word (i.e., the twhth

and (twh + 1)th rows of Q), qf 2 R2H is expressed as:

qf = qtwh
|| qtwh+1 (3.18)

The final question representation q̃ 2 RH is expressed as:

q̃ = tanh((qma || qf )Wq + bq) (3.19)
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where Wq 2 R3H⇥H and bq 2 RH are the weight matrix and bias vector

respectively. If no wh-word is present in a question, we use the first two

sequence-level question word representations for calculating q̃.

We measure the similarity between q̃ and the contextual encoding vec-

tors in B and E to determine the beginning and ending answer pointers.

Corresponding similarity vectors sb 2 RT and se 2 RT are computed as:

sb = q̃ B>
, se = q̃ E> (3.20)

The probability distributions for the beginning pointer b and the ending

pointer e for a given passage P and a question Q can be given as:

Pr(b | P ,Q) = softmax(sb)

Pr(e | P ,Q, b) = softmax(se) (3.21)

The joint probability distribution for obtaining the answer a is given as:

Pr(a | P ,Q) = Pr(b | P ,Q) Pr(e | P ,Q, b) (3.22)

To train our model, we minimize the cross entropy loss:

loss = �
X

log Pr(a | P ,Q) (3.23)

summing over all training instances. During prediction, we select the loca-

tions in the passage for which the product of Pr(b) and Pr(e) is maximum,

keeping the constraint 1  b  e  T .
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Passage: ... The family of a Korean-American missionary believed
held in North Korea said Tuesday they are working with U.S. o�-
cials to get him returned home. Robert Park told relatives before
Christmas that he was trying to sneak into the isolated communist
state to bring a message of ”Christ’s love and forgiveness” to North
Korean leader Kim ...
Question: What is the name of the Korean-American missionary?
Reference Answer: Robert Park

Table 3.1: Example of a (passage, question, answer)

3.5 Visualization

Figure 3.2: Multi-factor attention weights (darker regions signify higher
weights).

To understand how the proposed model works, for the example given

in Table 3.1, we visualize the normalized multi-factor attention weights F̃

and the attention weights k which are used for max-attentional question
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Figure 3.3: Max-attentional weights for question (the origin is set to �0.1 for
clarity).

aggregation.

In Figure 3.2, a small portion of F̃ has been shown, in which the answer

words Robert and Park are both assigned higher weights when paired with

the context word Korean-American. Due to the use of multi-factor attention,

the answer segment pays more attention to the important keyword although

it is quite far in the context passage and thus e↵ectively infers the correct

answer by capturing the long-range dependency. In Figure 3.3, it is clear that

the important question word name is getting a higher weight than the other

question words. This helps to infer the answer type during prediction, i.e., a

person’s name in this example.

3.6 Experiments

We evaluated AMANDA on three challenging QA datasets: NewsQA, Triv-

iaQA, and SearchQA. Using the NewsQA development set as a benchmark,
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we perform rigorous analysis for better understanding of how our proposed

model works.

3.6.1 Datasets

The NewsQA dataset (Trischler et al., 2017) consists of around 100K answer-

able questions in total. Similar to Trischler et al. (2017) and Weissenborn

et al. (2017), we do not consider unanswerable questions in our experiments

in this chapter. NewsQA is more challenging compared to the previously

released datasets as a significant proportion of questions requires reasoning

beyond simple word and context matching. This is due to the fact that the

questions in NewsQA were formulated only based on summaries without

accessing the main text of the articles. Moreover, NewsQA passages are sig-

nificantly longer (average length of 616 words) and cover a wider range of

topics.

TriviaQA (Joshi et al., 2017) consists of question-answer pairs authored

by trivia enthusiasts and independently gathered evidence documents from

Wikipedia and Bing Web search. This makes the task more similar to real-

life IR-style QA. In total, the dataset consists of over 650K question-answer-

evidence triples. Due to the high redundancy in Web search results (around

6 documents per question), each question-answer-evidence triple is treated

as a separate sample and evaluation is performed at the document level.

However, in Wikipedia, questions are not repeated (each question has 1.8

evidence documents) and evaluation is performed over questions. In addi-

tion to distant supervision, TriviaQA also has a verified human-annotated
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question-evidence collection. Compared to previous datasets, TriviaQA has

more complex compositional questions that require greater multi-sentence

reasoning.

SearchQA (Dunn et al., 2017) is also constructed to more closely reflect

IR-style QA. They first collected existing question-answer pairs from a Jeop-

ardy archive and augmented them with text snippets retrieved by Google.

One di↵erence with TriviaQA is that the evidence passages in SearchQA are

Google snippets instead of Wikipedia or Web search documents. This makes

reasoning more challenging as the snippets are often very noisy. SearchQA

consists of 140,461 question-answer pairs, where each pair has 49.6 snippets

on average and each snippet has 37.3 tokens on average.

3.6.2 Experimental Settings

We tokenize the corpora with NLTK2. We use the 300-dimension pre-trained

word vectors from GloVe (Pennington et al., 2014) and we do not update

them during training. The out-of-vocabulary words are initialized with zero

vectors. We use 50-dimension character-level embedding vectors. The number

of hidden units in all the LSTMs is 150. We use dropout (Srivastava et al.,

2014) with probability 0.3 for every learnable layer. For multi-factor attentive

encoding, we choose 4 factors (m) based on our experimental findings (refer

to Table 3.7). During training, the minibatch size is fixed at 60. We use

the Adam optimizer (Kingma and Ba, 2015) with a learning rate of 0.001

and clipnorm of 5. During testing, we enforce the constraint that the ending

pointer will always be equal to or greater than the beginning pointer. We use

2http://www.nltk.org/
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Model
Dev Test

EM F1 EM F1
Trischler et al. (2017)
Match-LSTM 34.4 49.6 34.9 50.0
BARB 36.1 49.6 34.1 48.2

Golub et al. (2017) - - 37.1 52.3
Weissenborn et al. (2017)
Neural BoW Baseline 25.8 37.6 24.1 36.6
FastQA 43.7 56.4 41.9 55.7
FastQAExt 43.7 56.1 42.8 56.1

Weissenborn (2017) - - 43.7 56.7

AMANDA 48.4 63.3 48.4 63.7

Table 3.2: Results on the NewsQA dataset.

exact match (EM) and F1 scores as the evaluation metrics. We implemented

AMANDA in this chapter using Keras3 and Theano.

3.6.3 Results

Table 3.2 shows that AMANDA outperforms all the state-of-the-art models

by a significant margin on the NewsQA dataset. Table 3.3 shows the results

on the TriviaQA dataset. In Table 3.3, the model named Classifier based on

feature engineering was proposed by Joshi et al. (2017). They also reported

the performance of BiDAF (Seo et al., 2017). A memory network-based ap-

proach, MEMEN, was recently proposed by Pan et al. (2017). Note that

in the Wikipedia domain, we choose the answer which provides the highest

maximum joint probability (according to Eq. (3.22)) for any document. Table

3.3 shows that AMANDA achieves state-of-the-art results in both Wikipedia

and Web domain on distantly supervised and verified data.

3https://keras.io/
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Model Set
Unigram N-gram
Accuracy F1

Dunn et al. (2017)

TF-IDF Max
Dev 13.0 -
Test 12.7 -

ASR
Dev 43.9 24.2
Test 41.3 22.8

AMANDA
Dev 48.6 57.7
Test 46.8 56.6

Table 3.4: Results on the SearchQA dataset.

Results on the SearchQA dataset are shown in Table 3.4. In addition

to a TF-IDF approach, Dunn et al. (2017) modified and reported the per-

formance of attention sum reader (ASR) which was originally proposed by

Kadlec et al. (2016). We consider a maximum of 150 words surrounding

the answer from the concatenated ranked list of snippets as a passage to

more quickly train the model and to reduce the amount of noisy informa-

tion. During prediction, we choose the first 200 words (about 5 snippets)

from the concatenated ranked list of snippets as an evidence passage. These

are chosen based on performance on the development set. Based on question

patterns, question types are always represented by the first two sequence-

level representations of question words. To make the results comparable, we

also report accuracy for single-word-answer (unigram) questions and F1 score

for multi-word-answer (n-gram) questions. AMANDA outperforms both sys-

tems, especially for multi-word-answer questions by a huge margin.
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3.6.4 E↵ectiveness of the Model Components

Table 3.5 shows that AMANDA performs better than any of the ablated

models which include the ablation of multi-factor attentive encoding, max-

attentional question aggregation (qma), and question type representation

(qf ). We also perform statistical significance test using paired t-test and

bootstrap resampling. Performance of AMANDA (both in terms of EM and

F1) is significantly better (p < 0.01) than the ablated models.

Model EM F1
minus multi factor attn. 46.4 61.2
minus qma and qf 46.2 60.5
minus qma 46.6 61.3
minus qf 46.8 61.8

AMANDA 48.4 63.3

Table 3.5: Ablation of proposed components on the NewsQA development
set.

Model EM F1
minus char embedding 47.5 61.4
minus question-dependent passage enc. 32.1 45.0
minus 2nd LSTM during prediction 46.5 61.6

AMANDA 48.4 63.3

Table 3.6: Ablation of other components on the NewsQA development set

One of the key contributions of this work is multi-factor attentive encod-

ing which aggregates information from the relevant passage words by using a

tensor-based attention mechanism. The use of multiple factors helps to fine-

tune answer inference by synthesizing information distributed across multiple

sentences. The number of factors is the granularity to which the model is al-

lowed to refine the evidence. The e↵ect of multi-factor attentive encoding is
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illustrated by the following example taken from the NewsQA development

set:

What will allow storage on remote servers?

...The iCloud service will now be integrated into the iOS 5 operating sys-

tem. It will work with apps and allow content to be stored on remote servers

instead of the users’ iPod, iPhone or other device...

When multi-factor attentive encoding is ablated, the model could not figure

out the cross-sentence co-reference and wrongly predicted the answer as apps.

On the contrary, with multi-factor attentive encoding, AMANDA could cor-

rectly infer the answer as iCloud service. We also performed an analysis over

the instances in the NewsQA development set where AMANDA could cor-

rectly predict the answer but it predicts the answer incorrectly when multi-

factor attentive encoding is not considered. We manually analyzed 50 such

randomly sampled instances and found that 80% of them indeed required

reasoning over multiple facts distributed across sentences.

Another contribution of this work is to include the question focus during

prediction. It is performed by adding two components: qma (max-attentional

question aggregation) and qf (question type representation). qma and qf im-

plicitly infer the answer type during prediction by focusing on the important

question words. Impact of the question focus components is illustrated by

the following example taken from the NewsQA development set:

who speaks on Holocaust remembrance day?
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Figure 3.4: Performance analysis of the qf component across di↵erent ques-
tion types. Red bars represent the performance of AMANDA and the blue
bars represent the performance when qf is not considered. AMANDA per-
forms better on the exact match (EM) score across almost all the question
types.
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... Israel’s vice prime minister Silvan Shalom said Tuesday “Israel can

never ... people just 65 years ago” ... He was speaking as Israel observes its

Holocaust memorial day, remembering the roughly...

Without the qma and qf components, the answer was wrongly predicted as

Israel, whereas with qma and qf , AMANDA could correctly infer the answer

type (i.e., a person’s name) and predict Silvan Shalom as the answer.

We also perform a comparative analysis between AMANDA and minus

qf across the most frequent question types, as depicted in Figure 3.4. We

show that AMANDA performs better on almost all the di↵erent question

types.

Ablation studies of other components such as character embedding, question-

dependent passage encoding, and the second LSTM during prediction are

given in Table 3.6. When the second LSTM (E) is ablated, a feed-forward

layer is used instead. Table 3.6 shows that question-dependent passage en-

coding has the highest impact on performance.

3.6.5 Variation on the number of factors (m) and qma

Table 3.7 shows the performance of AMANDA for di↵erent values of m. We

use 4 factors for all the experiments as it gives the highest F1 score. Note

that m = 1 is equivalent to standard bilinear attention.

Value of m 1 2 3 4 5
EM 45.8 47.4 48.7 48.4 48.0
F1 61.2 61.9 62.9 63.3 62.5

Table 3.7: Variation of m on the NewsQA development set.
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Aggregation EM F1
Mean 46.6 61.3
Sum 47.9 62.2
Max (AMANDA) 48.4 63.3

Table 3.8: Variation of question aggregation formulation on the NewsQA
development set.

(a) (b)

Figure 3.5: (a) Results for di↵erent question types. (b) Results for di↵erent
predicted answer lengths.

Table 3.8 shows the variation of question aggregation formulation. For

mean aggregation, the attentional weight vector k is formulated by applying

column-wise averaging on the similarity matrix A. Intuitively, it is giving

equal priority to all the passage words to determine a particular question word

attention. Similarly, in the case of sum aggregation, we apply a column-wise

sum operation. Table 3.8 shows that the best performance is obtained when

qma is obtained with a column-wise maximum operation on A. E↵ectively, it

is helping to give higher weights to the more important question words based

on the most relevant passage words.
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3.6.6 Quantitative Error Analysis

We analyzed the performance of AMANDA across di↵erent question types

and di↵erent predicted answer lengths. Figure 3.5(a) shows that it performs

poorly on why and other questions whose answers are usually longer. Figure

3.5(b) supports this fact as well. When the predicted answer length increases,

both F1 and EM start to degrade. The gap between F1 and EM also increases

for longer answers. This is because for longer answers, the model is not able

to decide the exact boundaries (low EM score) but manages to predict some

correct words which partially overlap with the reference answer (relatively

higher F1 score).

3.6.7 Qualitative Error Analysis

On the NewsQA development set, AMANDA predicted completely wrong

answers on 25.1% of the questions. We randomly picked 50 such questions for

analysis. The observed types of errors are given in Table 3.9 with examples.

42% of the errors are due to answer ambiguities, i.e., no unique answer is

present. 22% of the errors are due to mismatch between question and context

words. 10% of the errors are due to the need for highly complex inference.

6% of the errors occur due to paraphrasing, i.e., the question is posed with

di↵erent words that do not appear in the passage context. The remaining 20%

of the errors are due to insu�cient evidence, incorrect tokenization, wrong

co-reference resolution, etc.
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Answer ambiguity (42%)

Q: What happens to the power supply?
... customers possible.” The outages were due mostly to power
lines downed by Saturday’s hurricane-force winds, which
knocked over trees and utility poles. At ...
Context mismatch (22%)

Q: Who was Kandi Burrus’s fiance?
Kandi Burruss, the newest cast member of the reality
show “The Real Housewives of Atlanta” ... fiance, who died ... fi-
ance, 34-year-old Ashley “A.J.” Jewell, also...
Complex inference (10%)

Q: When did the Delta Queen first serve?
... the Delta Queen steamboat, a floating National ... scheduled voyage
this week ... The Delta Queen will go ... Supporters of the boat, which
has roamed the nation’s waterways since 1927 and helped the Navy ...
Paraphrasing issues (6%)

Q: What was Ralph Lauren’s first job?
Ralph Lauren has ... Japan. For four ... than the former tie salesman
from the Bronx. “Those ties ... Lauren originally named his company Polo
because ...

Table 3.9: Examples of di↵erent error types and their percentages. Ground
truth answers are bold-faced and predicted answers are underlined.

3.7 Further Advances

In this section, we discuss the recent advances in deep neural network-based

reading comprehension systems. These systems were mostly proposed after

our work was published.

Tay et al. (2018a) proposed a Dilated Compositional Unit (DCU)-based

encoder for fast and expressive sequence encoding for RC-based QA. The pro-

posed architecture utilizes DCU within a Bi-Attentive framework for both
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multiple choice and span prediction RC tasks. DCU achieved 49.4 Unigram

Accuracy and 59.5 N-gram F1 scores on the SearchQA dataset. Lin et al.

(2018) employed a passage selector to filter out noisy passages and a passage

reader to extract the correct answer from those denoised passages. They

reported 58.8 Exact Match and 64.5 F1 scores on the SearchQA dataset.

Tay et al. (2018b) proposed a densely connected neural architecture (DE-

CAPROP) for reading comprehension-based QA. DECAPROP densely con-

nects all pairwise layers of the network to model relationships between a

passage and a question across all hierarchical levels. Additionally, the dense

connectors are learned by using a Bidirectional Attention Connector (BAC).

DECAPROP achieved 53.1 Exact Match and 66.3 F1 scores on the NewsQA

dataset. It achieved 62.2 Unigram Accuracy and 70.8 N-gram F1 scores on

the SearchQA dataset. Clark and Gardner (2018) improved upon the popu-

lar BiDAF model (Seo et al., 2017) by sampling multiple passages from the

documents during training and using a shared normalization training objec-

tive that encourages the model to produce globally correct output. Clark and

Gardner (2018) reported a 71.3 F1 score on the web portion of the TriviaQA

dataset.

Another important recent advancement is the use of contextualized word

embeddings (Peters et al., 2018; Devlin et al., 2019). In traditional word

embeddings, each word is mapped to a unique single vector. In contrast, con-

textualized word embeddings assign each word a vector as a function of the

entire input sequence. It has been shown that the contextualized word embed-

dings can better model complex characteristics of word use (e.g., syntax and

semantics) and how these uses vary across linguistic contexts (i.e., polysemy).
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The use of contextualized word embeddings has shown consistent improve-

ments across many NLP tasks including QA. Peters et al. (2018) proposed

Elmo where the contextualized word embeddings are learned functions of the

internal states of a deep bidirectional LSTM-based language model, which

is pre-trained on a large text corpus. Elmo embeddings are typically used

in conjunction with traditional word type embeddings and character embed-

dings. More recently, Devlin et al. (2019) proposed that these contextualized

word embeddings can not only be used as features of word representations in

a task-specific neural architecture, but the deep language models can also be

directly fine-tuned with minimal modifications to perform downstream tasks.

Devlin et al. (2019) randomly mask out some words at the input layer, stack

bidirectional transformer layers, and predict these masked words at the top

layer. While BERT neglects dependency between the masked positions and

su↵ers from a pretrain-finetune discrepancy, Yang et al. (2019) proposed XL-

Net using an autoregressive formulation that enables learning bidirectional

contexts by maximizing the expected likelihood over all permutations of the

factorization order. XLNet further improves over BERT across many NLP

tasks. Typically, the contextualized word embeddings are high dimensional

and computationally intensive. Hence, it is challenging to apply them to tasks

where the input sequences are very long (e.g., passages in TriviaQA).

3.8 Summary

In this chapter, we proposed an end-to-end neural model for the machine

reading comprehension task. Specifically, we proposed a question-focused
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multi-factor attention network (AMANDA), which learns to aggregate mean-

ingful evidence from multiple sentences and to focus on the important words

in a question for extracting an answer span from the passage with a suitable

answer type. AMANDA achieves the best performance on NewsQA, Triv-

iaQA, and SearchQA datasets, outperforming prior models by significant

margins. Ablation results show the importance of the proposed components.

In this chapter, we assume that there always exists a valid answer in

the associated passage for a given question. In the next chapter, we extend

AMANDA and several other RC models for nil-aware answer extraction,

where the associated passage might not always contain a valid answer.
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Chapter 4

A Nil-Aware Answer

Extraction Framework for

Question Answering

Prior approaches for reading comprehension (RC) based question answering

(QA) su↵er from an impractical assumption that every question has a valid

answer in the associated passage. A practical QA system must possess the

ability to determine whether a valid answer exists in a given text passage. In

this chapter, we focus on developing QA systems that can extract an answer

for a question if and only if the associated passage contains an answer. If

the associated passage does not contain any valid answer, the QA system

should correctly return Nil. We propose a nil-aware answer span extraction

framework that is capable of returning Nil or a text span from the associated

passage as an answer in a single step. We show that our proposed framework
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can be easily integrated with several recently proposed QA models developed

for reading comprehension and can be trained in an end-to-end fashion. Our

proposed nil-aware answer extraction neural network decomposes pieces of

evidence into relevant and irrelevant parts and then combines them to infer

the existence of any answer. Experiments on the NewsQA dataset show that

the integration of our proposed framework significantly outperforms several

strong baseline systems that use pipeline or threshold-based approaches.

The rest of this chapter is organized as follows. Section 4.1 provides the

background of this work. Section 4.2 describes our proposed framework in

detail and how it can be integrated with several QA models. Section 4.3

provides the descriptions of several baseline systems used for comparison,

followed by the experiments and analysis in Section 4.4. In Section 4.5, we

provide an overview of the further advances in nil-aware machine reading

comprehension-based QA. Finally, we summarize the chapter in Section 4.6.

4.1 Background

In recent years, research on question answering has witnessed substantial

progress with rapid advances in neural network architectures. While several

neural models for machine reading comprehension have been proposed (Wang

and Jiang, 2017; Seo et al., 2017; Yang et al., 2017; Xiong et al., 2017; Weis-

senborn et al., 2017; Wang et al., 2017; Shen et al., 2017b; Chen et al., 2017;

Kundu and Ng, 2018a), none of the models considered nil questions, although

it is crucial for a practical QA system to be able to determine whether a text

passage contains a valid answer for a question. In this work, we focus on
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developing QA systems that extract an answer for a question if and only if

the associated passage contains a valid answer. Otherwise, they are expected

to return Nil as an answer.

We propose a nil-aware answer extraction framework which returns Nil

or a span of text as answer, when integrated to end-to-end neural RC-based

QA models. Our proposed framework is based on evidence decomposition-

aggregation where the evidence vectors derived by a higher level encoding

layer are first decomposed into relevant and irrelevant components and later

aggregated to infer the existence of a valid answer. In addition, we develop

several baseline models with pipeline and threshold-based approaches. In

a pipeline model, the detection of nil questions is carried out separately

before answer span extraction. In a threshold-based model, the answer span

extraction model is entirely trained on questions that have valid answers,

and Nil is returned based on a confidence threshold.

The contributions of this work reported in this chapter are as follows:

• We propose a nil-aware answer span extraction framework to return

Nil or an exact answer span to a question, in a single step, depending

on the existence of a valid answer.

• Our framework can be readily integrated with many recently proposed

neural machine comprehension models. In this work, we extended four

machine comprehension models, namely BiDAF (Seo et al., 2017), R-

Net (Wang et al., 2017), DrQA (Chen et al., 2017), and AMANDA

(Kundu and Ng, 2018a), with our proposed framework and show that

they achieve significantly better results compared to the corresponding
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pipeline and threshold-based models on the NewsQA dataset.

4.2 Proposed Framework

Given a passage and a question, we propose models that can extract an an-

swer if and only if the passage contains a valid answer. When the passage does

not contain any valid answer, the models return Nil as the answer. Similar

to the work in Chapter 3, the valid answer is denoted as two pointers in the

passage, representing the start and end tokens of the answer span. We first

describe our proposed evidence decomposition-aggregation framework for nil-

aware answer extraction. Then, we provide a detailed description of how we

extend our previously proposed model AMANDA (Kundu and Ng, 2018a)

to NAMANDA1 (nil-aware AMANDA). We also provide brief descriptions

about how we integrate our proposed framework to the other three models,

namely BiDAF, DrQA, and R-Net.

4.2.1 Nil-Aware Answer Extraction

Decomposition of lexical semantics over sentences has been successfully used

in the past for sentence similarity learning (Wang et al., 2016b). Most of

the recently proposed machine reading comprehension models can be gener-

alized based on a common pattern observed in their network architecture.

They have a question-passage joint encoding layer (also known as question-

aware passage encoding layer) followed by an evidence encoding layer. In this

work, we decompose the evidence vectors for each passage word obtained from

1Our source code is released at https://github.com/nusnlp/namanda
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the evidence encoding layer with respect to question-passage joint encoding

vectors to derive semantically relevant and irrelevant components. We decom-

pose the evidence vectors for each passage word, because passage vectors can

be partially supported by the corresponding question-passage joint encoding

vectors, and based on the level of support, it either increases or decreases

the chance of finding a valid answer. When we aggregate the orthogonally

decomposed evidence vectors, it combines both the supportive and unsup-

portive pieces of evidence for a particular passage word. To obtain the most

impactful portions, we perform a max-pooling operation over all the aggre-

gated vectors. The resulting vector is denoted as the Nil vector. Typically,

all the considered RC-based QA models compute two scores for each passage

word to derive the start and end pointers of a valid answer. Additionally, we

compute a nil pointer score from the Nil vector for the nil answer. We jointly

normalize the start and end pointer scores with the nil pointer score. As the

training set2 contains both nil questions (with no valid answers) and non-nil

questions (with valid answers), the model automatically learns when to pool

unsupportive (for nil questions) and supportive (for non-nil questions) por-

tions to construct the Nil vector. In this way, the model is able to induce a

strong bias towards the nil pointer when there is no answer present due to

the dominance of unsupportive components in the nil vector.

The proposed method in Wang et al. (2016b) was developed for sentence

similarity learning tasks, such as answer sentence selection. They decompose

an answer sentence with respect to a question and vice versa. The decom-

posed vectors are then aggregated to obtain a single vector which is used

2Refers to the training set of the NewsQA dataset
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Figure 4.1: Overview of the architecture of Nil-aware AMANDA (NA-
MANDA). Except Evidence Decomposition Aggregation and Nil-aware An-
swer Extraction, the remaining components are the same as AMANDA.

to derive the similarity score. Although our proposed method (developed for

the more complex task of answer span extraction) is inspired from the idea

of lexical decomposition and composition, one major di↵erence is that we

decompose the evidence vectors with respect to question-passage joint en-

coding vectors. Another important advance is how it is adapted to return nil

or a span of text from the passage in a single step.

4.2.2 Nil-Aware AMANDA

The architecture of Nil-aware AMANDA (NAMANDA) is given in Figure 4.1.

Initial layers such as word embedding, similarity matrix, question-dependent
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passage encoding, and question formulation of AMANDA remains the same

as described in Section 3.4. Additionally, we extend AMANDA with an evi-

dence decomposition-aggregation component followed by a nil-aware pointing

mechanism. They are discussed as follows.

Evidence Decomposition-Aggregation

First, multi-factor self-attentive encoding is performed to accumulate evi-

dence from the entire passage. The use of multiple factors while calculating

self attention helps to obtain meaningful information from a long context

with fine-grained inference. If m represents the number of factors, multi-

factor attention F[1:m]
2 RT⇥m⇥T is formulated as:

F[1:m] = V W[1:m]

f
V>

, (4.1)

where W[1:m]

f
2 RH⇥m⇥H is a 3-way tensor. T denotes the number of tokens

in the passage, and V represents the question-passage joint encoding vectors.

Now, to refine the evidence, a max-pooling operation is performed on F[1:m]

over the factor axis resulting in the self-attention matrix F 2 RT⇥T . We

normalize F by applying a row-wise softmax function, obtaining F̃ 2 RT⇥T .

Now the self-attentive encoding M 2 RT⇥H can be given as M = F̃ V.

The self-attentive encoding vectors are then concatenated with the question-

dependent passage word encoding vectors and a feed-forward neural network-

based gating is applied to control the overall impact, resulting inY 2 RT⇥2H .

Then we decompose the evidence vector for every passage word with or-

thogonal decomposition. The primary motivation behind decomposing the
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evidence vectors is to focus on both the semantically relevant and irrelevant

parts to determine whether a valid answer is present in the associated passage

or not. Each row of Y, y
t
2 R2H , is decomposed into its parallel and per-

pendicular components with respect to the corresponding question-passage

joint encoding (S) vector, st 2 R2H . The parallel components represent the

relevant parts of the accumulated evidence while the orthogonal components

represent the irrelevant counterparts. We use an orthogonal decomposition

function to decompose the evidence vectors in the geometric space. If the

parallel component of yt is represented as y=

t
2 R2H and the perpendicular

component is represented as y?
t
2 R2H , then:

y=

t
=

yt s>t
st s>t

st (4.2)

y?
t

= yt � y=

t
(4.3)

Similarly, we derive the parallel and orthogonal vectors for all the passage

words. We denote parallel components with Y=
2 RT⇥2H and perpendicular

components with Y?
2 RT⇥2H .

The aim of the aggregation step is to extract features from both the

parallel component matrixY= and the perpendicular component matrix Y?.

In the aggregation step, the parallel and orthogonal components are fed to a

linear layer. Ya
2 RT⇥H denotes the output of the linear layer and ya

t
2 RH

is its tth row:

ya

t
= tanh(y=

t
Wa + y?

t
Wa + ba) , (4.4)

where Wa 2 R2H⇥H and ba 2 RH are the weight matrix and bias vector
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respectively. Then we apply a max-pooling operation over all the words to

obtain the Nil vector representation denoted as n̂. Now we derive the score

for the Nil pointer which will be shared for normalizing the beginning and

ending pointers later. The Nil pointer score is given as:

ns = n̂w>
n

, (4.5)

where wn 2 RH is a learnable weight vector. Through the computation of the

Nil pointer score, the model learns to assign a higher score to the nil pointer

when the perpendicular components are more significant compared to the

parallel ones, i.e., when there is no valid answer present in the associated

passage. Similarly, when there is a valid answer present, it learns to assign a

lower score to the nil pointer.

Nil-Aware Pointing

Two stacked BiLSTMs are used on top of Y to determine the beginning and

ending pointers. Let the hidden unit representations of these two BiLSTMs

be B 2 RT⇥H and E 2 RT⇥H . We measure the similarity scores between the

previously derived question vector q̃ and the contextual encoding vectors in

B and E. If sb 2 RT and se 2 RT are the scores for the beginning and ending

pointers, then

sb = q̃ B>
, se = q̃ E> (4.6)

We prepend the nil score ns to sb and se for shared normalization. The
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updated scores ŝb 2 RT+1 and ŝe 2 RT+1 can be represented as:

ŝb = [ns, sb] , ŝe = [ns, se] (4.7)

The beginning and ending pointer probability distributions for a given

passage P and a question Q is given as:

Pr(b | P ,Q) = softmax(ŝb)

Pr(e | P ,Q) = softmax(ŝe) (4.8)

The joint probability distribution for answer a is given as:

Pr(a | P ,Q) = Pr(b | P ,Q) Pr(e | P ,Q) (4.9)

For training, we minimize the cross entropy loss summing over all training

instances. During prediction, we select the locations in the passage for which

the product of Pr(b) and Pr(e) is maximum, where 1  b  e  T +1. If the

value of b is 1, we assign the answer as Nil.

4.2.3 Nil-Aware DrQA

We extend DrQA (Chen et al., 2017) to NDrQA by integrating our proposed

nil-aware answer extraction framework. In DrQA, the embeddings of passage

tokens consist of pre-trained word vectors from GloVe, several syntactic fea-

tures, and passage-question joint embedding (aligned question embedding).

The syntactic features include exact match of passage words with question
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in surface, lowercase, and lemma form. They also used part-of-speech tags,

named entity tags, and term frequency values for each passage word. Subse-

quently, a stack of BiLSTMs (3 layers) is used for encoding. The outputs of

the stacked BiLSTMs are used as evidence vectors to help extract the answer

span. We decompose those stacked BiLSTM output vectors with respect to

the passage embedding and generate the nil pointer score as given in Equa-

tions (4.2–4.5). The question vector formulation in DrQA is performed by

applying a stack of BiLSTMs on question embeddings and combining the

resulting hidden units into one single vector. The question vector qD 2 RH

can be represented as:

qD =
X

t

�t qt , (4.10)

where qt 2 RH represents the hidden units of any tth question word. �t

represents the importance of each question word:

�t =
exp(qt w>)P
t0 exp(qt0 w>)

, (4.11)

where w 2 RH is a weight vector to learn. Chen et al. (2017) used a bi-linear

term to compute the scores for start and end pointers of the answer. If the

evidence vector encodings are represented as ED 2 RT⇥H , the start and end

pointer scores are given as:

sD
b

= qD Wb E
>
D

, sD
e

= qD We E
>
D

, (4.12)

where Wb 2 RH⇥H and We 2 RH⇥H are trainable matrices. The nil-aware

pointing mechanism is the same as discussed previously in Equations (4.7–
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4.9).

4.2.4 Nil-Aware R-Net

In R-Net (Wang et al., 2017), after embedding and encoding of the pas-

sage and question words, a gated recurrent network is used to obtain the

question-passage joint representation. The gated attention-based recurrent

neural network contains an additional gate to determine the importance of

information in the passage regarding a question. Di↵erent from the gates in

traditional RNNs such as LSTM or GRU, the additional gate is based on the

current passage word and its attention-pooling vector of the question, which

focuses on the relation between the question and current passage word. The

gate e↵ectively models the phenomenon that only parts of the passage are

relevant to the question in reading comprehension-based QA. Subsequently,

a self-matching attentive encoding is used to accumulate evidence from the

entire passage. In the output layer, an answer recurrent pointer network is

used to predict the boundary of an answer span.

To extend R-Net to nil-aware R-Net (NR-Net), we decompose the output

vectors of the self-matching layer with respect to the question-passage joint

encoding vectors, and then aggregate them to obtain the nil pointer score

as illustrated in Equations (4.2–4.5). In the output layer, we combine the

nil pointer score to the beginning and ending pointer unnormalized scores,

and jointly normalize them using softmax function as given in Equations

(4.7–4.8). The output layer of NR-Net is slightly di↵erent from the other

considered models in terms of using a recurrent pointer network over using
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two simple pointers for computing the start and end pointers of the answer.

For further details, we refer the readers to the R-Net paper (Wang et al.,

2017).

4.2.5 Nil-Aware BiDAF

In BiDAF (Seo et al., 2017), after embedding and encoding of the passage

and question words, an attention flow layer is used to jointly encode the

passage and question. The attention flow layer is responsible for linking and

fusing information from the passage and the question words. In the attention

flow layer, the attention vector at each time step, along with the encodings

from previous layers, is allowed to flow through to the subsequent layer. This

reduces the information loss caused by early summarization while computing

the joint representation of the passage and the question. Then, a modeling

layer is used to capture the interaction among the question-aware passage

vectors. Seo et al. (2017) used two layers of bi-directional LSTM to construct

the modeling layer. The output of the modeling layer serves as evidence to

help extract the answer span in the output layer.

To extend the BiDAF model to nil-aware BiDAF (NBiDAF), we decom-

pose the output of the modeling layer with respect to the question-passage

joint encoding, and then aggregate them to derive the nil pointer score (sim-

ilar to Equations 4.2–4.5). Similar to the other nil-aware models, we prepend

the nil pointer score to the start and end pointer unnormalized scores derived

in the output layer, and jointly normalize them.
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4.3 Baseline Models

For comparison, we propose two types of baseline approaches for nil-aware

answer extraction.

4.3.1 Pipeline Approach

Here, two models are used in a pipeline:

• Nil detector: Given a pair of passage and question, a nil detector

model determines whether a valid answer is present in the passage.

• Answer span extractor: If the nil detector model predicts the pres-

ence of a valid answer, the answer span extractor then extracts the

answer.

For nil detection, we developed a logistic regression (LR) model with

manually defined features and four neural models. For the LR model, we

extract four di↵erent features that capture the similarity between a passage

and a question. Let P be the passage and Q be the question (consisting of U 0

tokens excluding stop words). If f(P , Qi) is the frequency of the ith question

word in passage P , then the first feature ⌘1 is defined as:

⌘1 =
U

0X

i=1

log(1 + f(P ,Qi)) (4.13)

The second feature ⌘2 is the same as ⌘1, except that the lemma form is

considered for both passage and question tokens instead of the surface form.

Additionally, we include word overlap count features in both surface and
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lemma forms. Let cs (cl) be the number of tokens appearing in both P and

Q in surface (lemma) form. Features ⌘3 and ⌘4 are defined as:

⌘3 = cs / U
0
, ⌘4 = cl / U

0 (4.14)

We also developed several advanced neural network architectures for nil

detection. In neural architectures, we do not use any syntactic features. After

embedding, we apply sequence-level encoding with either BiLSTM or Convo-

lutional Neural Network (CNN). For CNN, we use equal numbers of unigram,

bigram, and trigram filters and the outputs are concatenated to obtain the

final encoding. Next, we apply either global max-pooling (MP) or attentive

pooling (AP) over all the sequence vectors to obtain an aggregated vector

representation. Let the sequence encoding of a passage be Pnd
2 RT⇥H , and

pnd

t
be the tth row of Pnd. The aggregated vector p̃nd 2 RH for AP can be

obtained as:

a
nd

t
/ exp(pnd

t
w>) (4.15)

p̃nd = andPnd
, (4.16)

where w 2 RH is a learnable vector. Similarly, we derive the aggregated

question vector q̃nd. For nil detection, we compute the similarity score (snd)

between the aggregated vectors:

snd = sigmoid(p̃nd q̃>
nd
) (4.17)

We use binary cross-entropy for training these models.
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We experimented with four state-of-the-art answer span extractor models

namely BiDAF (Seo et al., 2017), R-Net (Wang et al., 2017), DrQA (Chen

et al., 2017), and AMANDA (Kundu and Ng, 2018a). Note that the answer

extraction models are trained entirely on passage-question pairs which always

have valid answers.

4.3.2 Threshold-based Approach

Here, we do not use any nil questions to train the neural answer span extrac-

tion model. The model is entirely trained on passage-question pairs where

every question has a valid answer in the corresponding passage. This ap-

proach assumes that when there is a valid answer, the beginning and ending

pointers will have lower entropy. This results in a higher maximum joint

probability of the beginning and end pointers. In contrast, when an answer

is not present in the associated passage, the beginning and ending pointers

will have higher entropy, resulting in a lower value of maximum joint proba-

bility. We set the maximum joint probability threshold based on the best Nil

F1 score on the nil questions in the development set (by performing a grid

search). Now, for a given test passage and question, we first compute the

maximum of all the joint probabilities associated with all the answer spans.

Let aspan be the answer span with highest joint probability pmax. We assign

the final answer as follows:

answer =

8
>><

>>:

Nil, if pmax  threshold

aspan, otherwise

(4.18)
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Dataset #Passages #Questions

Train
NewsQA

10,938
92,549

+Nil Qs 107,673

Dev
NewsQA

638
5,166

+Nil Qs 5,988

Test
NewsQA

632
5,126

+Nil Qs 5,971

Table 4.1: Statistics of the NewsQA dataset. #Passages and #Questions
denote the number of passages and questions respectively.

4.4 Experiments

In this section, we present the experimental settings, results, followed by an

analysis of the models.

4.4.1 Experimental Settings

We use the NewsQA dataset with nil questions (Trischler et al., 2017) in

our experiments. Its training, development, and test sets consist of 10,938,

638, and 632 passages respectively and every passage is associated with some

questions. In each subset, there are some questions that have no answers in

the corresponding associated passages (i.e., the nil questions). The detailed

statistics of the dataset are given in Table 4.1.

We compute exact match (EM) and F1 score for questions with valid

answers. For questions without any valid answers, we compute Nil precision,
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recall, and F1 scores:

Nil precision =
#Correctly predicted Nil

#predicted Nil
(4.19)

Nil recall =
#Correctly predicted Nil

#Nil questions
(4.20)

Nil F1 = 2⇥
Nil precision ⇥ Nil recall

Nil precision + Nil recall
(4.21)

To compute the overall EM and F1 scores, we consider Nil as correct for the

questions which do not have any valid answers. All evaluation scores reported

in this work are in %.

All the neural network models are implemented in PyTorch3. We use the

default hyper-parameters for all the answer span extractor models. We use

the open source implementation of DrQA4. We use a third-party implemen-

tation of R-Net5 whose performance is very similar to the original scores. We

reimplemented BiDAF6 and AMANDA7 with PyTorch to easily integrate

our proposed nil-aware answer extraction framework and make the training

faster.

We integrate the nil-aware answer span extraction framework with each

model keeping all the hyper-parameters unchanged. For nil-detection models,

we use the same settings as (N)AMANDA. We use 300 hidden units for

BiLSTMs and a total of 300 filters for the CNN-based models. We use dropout

(Srivastava et al., 2014) with probability 0.3 for every trainable layer. We use

3http://pytorch.org
4https://github.com/facebookresearch/DrQA
5https://github.com/HKUST-KnowComp/MnemonicReader/blob/master/r net.py
6Our implementation gives 3% lower F1 score compared to the reported results in Seo

et al. (2017) on the SQuAD development set.
7Our reimplementation of AMANDA in PyTorch in this chapter gives 0.5% higher F1

score compared to the reported F1 score in Chapter 3 on the NewsQA test set.
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binary cross-entropy loss and the Adam optimizer (Kingma and Ba, 2015)

for training the nil-detection models.

4.4.2 Results

Tables 4.2 and 4.3 compare results of the nil-aware answer span extractor

models with several pipeline and threshold-based models respectively. We

also include the results of four standalone answer span extraction models on

the test set without nil questions.

Table 4.2 shows that the end-to-end nil-aware models achieve the highest

overall EM and F1 scores compared to all the corresponding pipeline systems.

Note that the MP-BiLSTM nil detection model achieves a higher Nil F1 score

compared to LR and MP-CNN. This is because BiLSTM is able to capture

long-range contextual information to infer the existence of valid answers.

Furthermore, AP-based models perform better compared to MP-based mod-

els as the attention mechanism used in AP-based models inherently identifies

important contextual information. Due to this, the performance gap between

AP-CNN and AP-BiLSTM is lower than the performance gap between MP-

CNN and MP-BiLSTM. In addition to achieving a higher Nil F1 score than

the strong nil detection baseline systems, nil-aware models manage to achieve

competitive scores compared to the corresponding standalone answer span

extractors on the test set where there are no nil questions. Hence, the nil an-

swer handling components have no adverse e↵ects on answer span extraction

capability on the passage-question pairs when there exist valid answers.

Table 4.3 shows that the nil-aware models outperform the corresponding

82



A
n
sw

er
E
x
tr
a
ct
o
r

N
il

D
et
ec

to
r

T
es
t
S
et

(w
/
o
N
il

Q
u
es
ti
o
n
s)

T
es
t
S
et

(w
it
h

N
il

Q
u
es
ti
o
n
s)

E
M

F
1

N
il

P
re

ci
si
o
n

N
il

R
ec

a
ll

N
il

F
1

O
v
er

a
ll

E
M

O
v
er

a
ll

F
1

B
iD

A
F

-
42

.5
57

.5
-

-
-

36
.5

49
.4

L
R

39
.6

53
.2

33
.1

28
.9

30
.9

38
.1

49
.7

M
P
-B

iL
S
T
M

40
.1

54
.2

52
.5

48
.3

50
.3

41
.3

53
.4

M
P
-C

N
N

42
.3

57
.2

73
.8

15
.0

24
.9

38
.4

51
.2

A
P
-B

iL
S
T
M

40
.5

54
.7

55
.3

47
.5

51
.1

41
.5

53
.7

A
P
-C

N
N

40
.1

54
.3

50
.8

39
.9

44
.7

40
.1

52
.3

N
B
iD

A
F

40
.8

54
.7

48
.0

59
.6

53
.2

43
.5

55
.4

R
-N

et

-
49

.9
64

.0
-

-
-

42
.8

54
.8

L
R

46
.4

58
.8

33
.1

28
.9

30
.9

43
.9

54
.6

M
P
-B

iL
S
T
M

47
.3

60
.3

52
.5

48
.3

50
.3

47
.5

58
.6

M
P
-C

N
N

49
.7

63
.6

73
.8

15
.0

24
.9

44
.8

56
.7

A
P
-B

iL
S
T
M

47
.6

60
.7

55
.3

47
.5

51
.1

47
.6

58
.8

A
P
-C

N
N

47
.2

60
.4

50
.8

39
.9

44
.7

46
.2

57
.5

N
R
-N

et
47

.0
60

.8
53

.6
57

.6
55

.5
48

.5
60

.3

D
rQ

A

-
50

.0
64

.0
-

-
-

42
.9

54
.8

L
R

46
.3

58
.8

33
.1

28
.9

30
.9

43
.8

54
.6

M
P
-B

iL
S
T
M

47
.1

60
.2

52
.5

48
.3

50
.3

47
.3

58
.5

M
P
-C

N
N

49
.6

63
.5

73
.8

15
.0

24
.9

44
.7

56
.7

A
P
-B

iL
S
T
M

47
.4

60
.6

55
.3

47
.5

51
.1

47
.4

58
.8

A
P
-C

N
N

47
.0

60
.2

50
.8

39
.9

44
.7

46
.0

57
.3

N
D
rQ

A
48

.5
61

.8
53

.5
57

.2
55

.3
49

.8
61

.1

A
M
A
N
D
A

-
49

.2
64

.2
-

-
-

42
.2

55
.1

L
R

45
.4

58
.8

33
.1

28
.9

30
.9

43
.1

54
.5

M
P
-B

iL
S
T
M

46
.2

60
.2

52
.5

48
.3

50
.3

46
.5

58
.5

M
P
-C

N
N

48
.3

63
.3

73
.8

15
.0

24
.9

43
.6

56
.5

A
P
-B

iL
S
T
M

46
.3

60
.6

55
.3

47
.5

51
.1

46
.5

58
.7

A
P
-C

N
N

45
.9

60
.0

50
.8

39
.9

44
.7

45
.1

57
.1

N
A
M
A
N
D
A

48
.6

62
.2

57
.1

56
.7

56
.9

49
.7

61
.5

T
ab

le
4.
2:

P
er
fo
rm

an
ce

C
om

p
ar
is
on

w
it
h
p
ip
el
in
e
ap

p
ro
ac
h
es

on
th
e
N
ew

sQ
A

te
st

se
t
(L
R

–
L
og
is
ti
c
R
eg
re
ss
io
n
,

M
P
–
M
ax

-p
oo

li
n
g,

A
P
–
A
tt
en
ti
ve

P
oo

li
n
g)
.

83



A
n
sw

er
E
x
tr
a
ct
o
r

N
il

A
n
sw

er
H
a
n
d
li
n
g

T
es
t
S
et

(w
/
o
N
il

Q
u
es
ti
o
n
s)

T
es
t
S
et

(w
it
h

N
il

Q
u
es
ti
o
n
s)

E
M

F
1

N
il

P
re

ci
si
o
n

N
il

R
ec

a
ll

N
il

F
1

O
v
er

a
ll

E
M

O
v
er

a
ll

F
1

B
iD

A
F

N
o

42
.5

57
.5

-
-

-
36

.5
49

.4
Y
es

37
.9

48
.3

25
.8

60
.2

36
.1

41
.0

50
.0

N
B
iD

A
F

40
.8

54
.7

48
.0

59
.6

53
.2

43
.5

55
.4

R
-N

et
N
o

49
.9

64
.0

-
-

-
42

.8
54

.8
Y
es

45
.3

54
.7

25
.5

53
.6

34
.6

46
.5

54
.5

N
R
-N

et
47

.0
60

.8
53

.6
57

.6
55

.5
48

.5
60

.3

D
rQ

A
N
o

50
.0

64
.0

-
-

-
42

.9
54

.8
Y
es

40
.8

48
.1

23
.1

68
.0

34
.5

44
.6

51
.0

N
D
rQ

A
48

.5
61

.8
53

.5
57

.2
55

.3
49

.8
61

.1

A
M
A
N
D
A

N
o

49
.2

64
.2

-
-

-
42

.2
55

.1
Y
es

42
.2

51
.3

24
.0

59
.5

34
.2

44
.6

52
.5

N
A
M
A
N
D
A

48
.6

62
.2

57
.1

56
.7

56
.9

49
.7

61
.5

T
ab

le
4.
3:

P
er
fo
rm

an
ce

co
m
p
ar
is
on

w
it
h
th
re
sh
ol
d
-b
as
ed

ap
p
ro
ac
h
es

on
th
e
N
ew

sQ
A

te
st

se
t.

84



threshold-based models. Note that all four answer span extraction models,

when used in a threshold-based approach for nil detection, produce low Nil

precision and relatively higher Nil recall. The low precision significantly de-

grades performance on the test set without nil questions. These models often

return Nil since it is critical to find suitable values for the required threshold.

This is because NewsQA passages are often very long and as a result, prob-

ability distributions with higher entropy for answer pointer selection lead to

irregular maximum joint probability threshold values.

We perform statistical significance tests using paired t-test and bootstrap

resampling. Performances of all the nil-aware models (in terms of overall

EM and F1) are significantly better (p < 0.01) than the corresponding best

pipeline models and threshold-based approaches.

4.4.3 Analysis

For better understanding, we present further experiments and analysis of one

of the proposed model NAMANDA.

In addition to linear aggregation, we experiment with BiLSTM-based and

CNN-based aggregation models. When we use BiLSTM aggregation, Eq. (4.4)

is modified to ya

t
= h=

t
+ h?

t
, where

h=

t
= BiLSTM(y=

t
,h=

t�1
,h=

t+1
) (4.22)

h?
t

= BiLSTM(y?
t
,h?

t�1
,h?

t+1
)

We use equal numbers of unigram, bigram, and trigram filters for CNN-based

aggregation. Similar to BiLSTM-based aggregation, we add the CNN outputs
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Aggregation
Model

w/o Nil with Nil
EM
(F1)

Nil Prec/
Rec (F1)

Overall
EM (F1)

BiLSTM
47.6
(60.9)

56.5/53.5
(55.0)

48.4
(59.9)

CNN
46.2
(60.0)

52.7/54.5
(53.6)

47.3
(59.2)

Linear
(NAMANDA)

47.8
(60.5)

51.2/57.2
(54.0)

49.1
(60.0)

Table 4.4: E↵ect of di↵erent aggregation models on the NewsQA dev set.

for Y= and Y?. Table 4.4 shows that linear aggregation achieves the highest

overall F1 score despite using the least number of parameters.

Table 4.5 shows the results of NAMANDA on the NewsQA development

set when di↵erent components are removed such as character embeddings,

question-passage joint encoding, and the second LSTM for the answer-ending

pointer. When question-passage joint encoding is ablated, self-attentive en-

coding is formed as well as decomposed with respect to sequence-level pas-

sage encoding. When we remove the second LSTM for the answer-ending

pointer, a feed-forward network is used instead. It is clear from Table 4.5

that question-passage joint encoding has the highest impact.

Figure 4.2(a) and (b) show the results of NAMANDA on di↵erent question

(excluding the stop words) and passage lengths respectively on the NewsQA

development set. With increasing question length, the Nil F1 score also im-

proves. This is because with more information in a question, it becomes easier

to detect whether the associated passage contains a valid answer. Increasing

Nil F1 scores also help to improve the overall F1 scores. However, the over-

all F1 score degrades with the increasing length of the associated passage.
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Model
w/o Nil with Nil

EM
(F1)

Nil Prec/
Rec (F1)

Overall
EM (F1)

– character
embeddings

46.3
(59.2)

51.9/54.1
(53.0)

47.4
(58.5)

– q-passage
joint encoding

32.5
(43.9)

41.4/58.8
(48.6)

36.1
(45.9)

– second
LSTM

47.6
(60.3)

56.7/51.0
(53.7)

48.0
(59.0)

NAMANDA
47.8
(60.5)

51.2/57.2
(54.0)

49.1
(60.0)

Table 4.5: Ablation studies on the NewsQA dev set.

When the associated passage is long, it is di�cult for the answer span ex-

tractor to extract an answer for a question which has a valid answer, due

to the increasing amount of potentially distracting information. The Nil F1

scores remain similar for passages consisting of not more than 1,200 tokens.

Beyond that, the Nil F1 score degrades a little as it becomes very challenging

to infer the existence of a valid answer accurately with an increasing amount

of potentially distracting information present in the passage.

Nil detection is itself a very challenging task. Performances of the nil-

aware models are worse than the corresponding answer extractor models on

the test set without nil questions as the Nil Precision is lower than 100%.

We carried out an experiment to evaluate the performance of NAMANDA

on development sets with varying number of nil questions. As the proportion

of nil questions in a set increases, NAMANDA outperforms AMANDA by a

larger margin on overall scores.

We also conducted a qualitative error analysis to better understand the

shortcomings of our proposed model NAMANDA. We performed the error
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(a)

(b)

Figure 4.2: Results for di↵erent (a) question and (b) passage lengths on
NewsQA dev set.

analysis for two cases, and for each case, we randomly picked 50 instances

from the NewsQA development set.

• First, we analyzed the instances for which the gold answers were Nil

but the model incorrectly predicted text spans as answers. For these

instances, the error types are summarized in Table 4.6 with examples.

44% of the errors occurred due to the mismatch of context between the

passage and the question. For instance, in the example given in Table

4.6, the gold answer is Nil as there is no mention of Kingsley winning
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Oscar. However, the model incorrectly predicted the answer as Monday

31 May: 0300 as there is a match on Kingsley between the question and

the passage. Notably, the model predicted the correct answer type to

the when question, and predicted a date. We found that 28% of the

errors are due to impossible condition, i.e., the answer is Nil because

there is no valid continuous span in the passage which can answer the

question. However, there might be multiple potential answers which do

not occur in the passage in a continuous span. 12% of the errors occur

due to insu�cient question context. The remaining 16% of the errors

are due to multiple other reasons such as detection of antonyms, entity

swapping, dataset noise (incorrect annotation), etc.

• Second, we analyzed the instances for which there were valid answers,

but the model incorrectly predicted the answers as Nil. For these in-

stances, the error types are summarized in Table 4.7 with examples.

36% of the errors occurred when it requires complex reasoning. For

instance, in the example given in Table 4.7, it requires a complex coref-

erence resolution, i.e., iPhone 4S is Apple’s new phone and it has a

new function called Siri. 28% of the errors occurred due to insu�cient

context in the question. For instance, in the example given in Table

4.7, it is not clear from the question whether it is asking about the

business goal or design goal of Ralph Lauren. We found that 20% of the

errors are due to paraphrasing issues. The remaining 16% of the errors

are due to the absence of clear answers, ambiguous question content,

dataset noise (i.e., the question is actually unanswerable), etc.
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4.5 Further Advances

Concurrent to our work, Rajpurkar et al. (2018) released the SQuAD 2.0

dataset (also known as SQuADRUN) by expanding the original SQuAD

dataset with unanswerable questions. Since then, there has been much ad-

vancement in this area. Several research papers have been published based

on the recent introduction of contextual embedding models, such as ELMO

(Peters et al., 2018) and BERT (Devlin et al., 2019). For instance, Hu et al.

(2019) proposed a read-then-verify system, which utilizes an ELMO-based

neural reader to extract candidate answers, produces Nil answer probabili-

ties, and leverages an answer verifier to decide whether the predicted answer

is entailed by the input snippets. Zhang et al. (2019a) proposed to incorpo-

rate explicit contextual semantics from pre-trained semantic role labeling and

introduced an improved language representation model, namely Semantics-

aware BERT (SemBERT), which is capable of explicitly absorbing contex-

tual semantics over a BERT backbone. Zhang et al. (2019b) proposed using

syntax to guide the text modeling of both passages and questions by incor-

porating explicit syntactic constraints into attention mechanisms for better,

linguistically motivated word representations. They proposed a dual contex-

tual architecture called syntax-guided network (SG-Net), which consists of a

BERT context vector and a syntax-guided context vector, to provide more

fine-grained representation. Lan et al. (2019) proposed ALBERT which has

a self-supervised loss that focuses on modeling inter-sentence coherence and

showed that it consistently helps downstream tasks with multi-sentence in-

puts. Moreover, they also presented parameter-reduction techniques to lower
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memory consumption and increase the training speed of BERT.

4.6 Summary

In this chapter, we have focused on nil-aware answer span extraction for

RC-based QA. A nil-aware QA system only extracts a span of text from the

associated passage as an answer to a given question if and only if the passage

contains a valid answer. We have proposed a novel nil-aware answer span

extraction framework based on evidence decomposition and aggregation that

can be easily integrated into several recently proposed neural answer span ex-

traction models. We have also developed several pipeline and threshold-based

models using advanced neural architectures for comparison. Experiments on

the NewsQA dataset show that our proposed framework, when integrated to

the answer span extraction models, achieves better performance compared

to all the corresponding pipeline and threshold-based models.

In Chapters 3 and 4, we have focused on single-turn machine reading

comprehension-based QA. In the following chapter, we will focus on a more

challenging multi-turn conversational QA task.
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Context Mismatch (44%)

Q: When did Kingsley win oscar?
... Watch The Screening Room Cannes special on CNN at the following
dates and times: Wednesday 27 May: 0730, ..., Monday 31 May: 0300
(All times GMT) In the most high-profile amalgamation of Indian and
western talent yet, Academy Award-winning actor Ben Kingsley stars
with Bollywood superstar Amitabh Bachchan in a drama about a pair
of maths geniuses. Ben Kingsley who stars in “Teen Patti” is the first
Academy Award-winner ever to take a role in a Bollywood movie. ...
Impossible Condition (28%)

Q: When is the new date of the shows?
... to change the schedule but in the end we wanted to ensure that all of
Michael’s fans attending the concerts get the same quality in staging and
level of entertainment,” said the Ticketmaster e-mail sent to someone
who bought tickets for the third show. “In order to deliver a phenomenal
and unprecedented show – the first show on the 8th July will take place
on 13th July 2009,” according AEG Live, the promoter of the London
concerts. “The subsequent shows on 10th July will be moved to 1st March
2010, 12th July will be moved to 3rd March 2010, and the show on the
14th July will be moved to 6th March 2010.” The delay is ...
Insu�cient Question Context (12%)

Q: Exactly what type of problems?
... who later miscarried their unborn child. Dr. Jennifer Arnold and hus-
band Bill Klein, who both have skeletal dysplasia, a bone-growth dis-
order that causes dwarfism, have ...

Table 4.6: Examples of di↵erent error types and their percentages. Ground
truth answers are Nil, but NAMANDA incorrectly predicted the answers as
text spans. The incorrectly predicted answers are bold-faced.
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Complex Reasoning (36%)

Q: What will Apple 4s have?
... The iPhone 4S may not look any di↵erent from its predecessor, but
it is Apple’s only model with a sort of robot living inside. Apple’s new
phone, which was announced on Tuesday to be sold in stores on October
14, will have a new function called Siri. The program lets people bark
commands ...
Insu�cient Question Context (28%)

Q: What is his goal?
... he’s Ralph Lauren, and we’re not. Ralph Lauren has his eye on China
and Japan. For four decades no ... Lauren instinctively caught some-
thing that was in the air before any of his competitors had a chance to
grab it – the desire, not just to be a success but to look like one before
you’d even achieved your goal. What’s more, Lauren ...
Paraphrasing Issues (20%)

Q: What makes them the leader?
... Brazil jolted the global health community in 1996 when it began guar-
anteeing free anti-retroviral treatment to HIV/AIDS patients ...
estimated $2 billion the program has saved Brazil in hospital costs be-
tween 1996 and 2004. Brazil’s e↵orts to reverse the tide of the AIDS
epidemic have become the object of admiration in the global health com-
munity, but the trailblazer is encountering new challenges. When Brazil
decided to guarantee free anti-retrovirals, there were 10,000 people being
treated ...

Table 4.7: Examples of di↵erent error types and their percentages. Ground
truth answers are not Nil, i.e., there are valid answers present in the asso-
ciated passages. However, NAMANDA incorrectly predicted the answers as
Nil. The ground truth answers are bold-faced.
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Chapter 5

Learning to Ask Clarification

Questions in Conversational

Question Answering

Recently proposed conversational question answering systems lack the ability

to ask a follow-up clarification question when a given question is underspec-

ified. In this chapter, we focus on developing a question answering system

that can predict the answer to a question in a conversation, and has the

ability to ask a follow-up clarification question if the original question is

underspecified. We propose a pipeline approach that consists of an answer

prediction model and a follow-up question generation model. The answer

prediction model is based on a dual co-attention network while the follow-up

question generation model is based on a sequence-to-sequence neural net-

work enhanced with a copying mechanism. We experimented on the recently
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released ShARC dataset, and show that our approach achieves performance

competitive to the state of the art. The current state-of-the-art model E3

(Zhong and Zettlemoyer, 2019) is very ShARC-specific. An important con-

tribution of this work is that the proposed approach is generic and can be

applied to any conversational question answering task which requires clarifi-

cation question generation.

5.1 Background

Traditional machine reading comprehension-based question answering (QA)

tasks share the single-turn setting of answering questions with the help of

associated text passages (Rajpurkar et al., 2016; Trischler et al., 2017; Joshi

et al., 2017; Dunn et al., 2017; Welbl et al., 2018; Rajpurkar et al., 2018).

Usually, the questions are independent of each other in this setting. However,

humans naturally seek answers via conversation, which carries over context

through the conversation flow.

To mimic the process of natural conversation, several datasets such as

QuAC (Choi et al., 2018) and CoQA (Reddy et al., 2019) have been recently

released which require a system to infer the answer for a question by un-

derstanding a series of question-answer pairs in the conversation history, in

addition to the associated text passage. Subsequently, several neural network-

based models have been proposed which are able to answer questions in a

conversational setting (Huang et al., 2019; Zhu et al., 2018). Although QuAC

and CoQA became very popular, they do not contain underspecified ques-

tions that require a system to generate clarification questions. However, a
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Passage: If you are a female Vietnam Veteran with a child who has
a birth defect or you are a child of a female Vietnam Veteran with a
birth defect, the child may be eligible for VA-financed health care.
Conversation History:
fq1 : Are you a female Vietnam Veteran? fa1 : Yes
fq2 : Does your child have a birth defect? fa2 : Yes
Question: I registered as a single not knowing my son would have a
birth defect. Is my child eligible for VA-financed health care?
Reference Answer: Yes
Passage: In order to qualify for this benefit program, you must be a
Native American/American Indian who has been accepted or enrolled
in an accredited degree program, college or university to study in the
field of health care, and you or your family member must be enrolled in
a federally recognized American Indian tribe or Alaska Native village.
Conversation History:
fq1 : Are you a Native American/American Indian? fa1 : Yes
Question: I am currently in my third year studying for my Doctorate
of Medicine at Cambridge University. Do I qualify for this benefit
program?
Reference Answer: Are you or your family member enrolled in a
federally recognized American Indian tribe or Alaska Native village?

Table 5.1: Example instances from the ShARC development set.

practical conversational QA system must possess the ability to ask a clarifi-

cation question when a question is underspecified. Concurrently, Saeidi et al.

(2018) released the ShARC dataset consisting of regulatory texts such as

tra�c laws, benefit programs, tax and visa regulations, etc. Di↵erent from

QuAC and CoQA, the ShARC dataset contains underspecified questions that

require a system to generate clarification questions.

In this work, we focus on the ShARC dataset. We propose a pipeline sys-

tem, namely LEIA, for learning to ask clarification questions in conversational

question answering. LEIA consists of an answer classification model and a

clarification question generation model. Given a passage and a conversation
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history, the answer classification model predicts the answer to a question.

The answer can be Yes, No, Irrelevant, or More. For an underspecified ques-

tion, we expect the answer classification model to predict More, and then the

question generator generates a clarification question. Consider the examples

given in Table 5.1 (taken from the ShARC development set). For the first

example, the answer classification model should predict Yes, since the child

has a birth defect and the mother is a female Vietnam Veteran, as given in

the conversation history. However, in the second example, the question is

underspecified as there is no information provided about the family in the

question or the conversation history. Hence, the answer classification model

should predict More, and the clarification question generator is expected to

generate a clarification question.

The proposed answer classifier is based on novel dual co-attention net-

works for jointly encoding the associated passage, the question, and the con-

versation history. First, we use a co-attention network that captures the

interaction between the conversation history and the question to compute

a reformulated question representation. Then another co-attention network

captures the interaction between the reformulated question and the asso-

ciated passage to predict the answer. The clarification question generator

is based on a sequence-to-sequence neural network model enhanced with a

copying mechanism. As shown in the second example in Table 5.1, a clarifica-

tion question often repeats several words from the associated passage and the

conversation history. Hence, the copying mechanism allows the clarification

question generator to copy words from the passage and conversation history

while generating the words.
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Recently, Zhong and Zettlemoyer (2019) proposed an entailment-driven

extract and edit (E3) network. E3 extracts implicit decision rules from the

text, computes whether each rule is entailed by the conversation history, and

answers the question. To do so, it needs to identify explicit rule spans from

the passage. The rule spans are obtained by using edit distance-based match-

ing between the passage words and the question words in the conversation

history. Additionally, E3 also needs to access the full dialog tree to extract the

rule spans which are often not covered by a single instance. This makes the

model rather restrictive since there might not be exact matching of words

between the passage and the questions in the conversation history. More-

over, in practical settings, a machine would not be able to access the future

question-answer pairs in the dialog tree for extracting the rule spans from

the passage. In contrast to E3, our proposed system is generic and does not

rely on any task-specific preprocessing, such as explicit rule span extraction.

Overall, the contributions of this work are:

• We developed a generic conversational QA system that can answer a

question, or ask a clarification question if the question is underspecified.

• Our proposed system achieves performance competitive to the state

of the art on the ShARC dataset. Additionally, it does not have any

dataset-specific preprocessing steps in contrast to a recent state-of-the-

art ShARC-specific model (Zhong and Zettlemoyer, 2019).

• We show that the proposed pipeline approach performs better than the

joint model where the two models are trained end-to-end in a multi-task

learning approach.
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5.2 Problem Definition

The conversational QA task in ShARC can be formalized on a per-utterance

basis. Let Q be an input question, and P be an input support rule text,

i.e., the associated passage. Let V be the vocabulary. Furthermore, let H =

(fq1 , fa1), (fq2 , fa2), . . . , (fqn , fan) be a conversation history where each fqi

is a follow-up question, and each fai 2 {Yes, No} is a follow-up answer. We

concatenate the follow-up questions and their corresponding answers with a

special separator token. In this way, a conversation history can be given as:

H = fq1 || fa1 || fq2 || fa2 || . . . || fqn || fan A question is often associated

with a scenario which describes the context of the question. For simplicity,

we concatenate the scenario and the question together and represent it as the

question Q. An input instance can be referred to X = (Q,P ,H). Given an

input X , the task is to predict an answer Y 2 {Yes, No, Irrelevant}[V?, that

specifies whether the answer is Yes, No, Irrelevant, or a clarification question.

Irrelevant is the target answer when the associated passage P is not related

to Q, i.e., the question cannot be answered. In our proposed approach, the

answer classifier first predicts whether the answer is Yes, No, Irrelevant, or

More, and if the answer isMore, the clarification question generator generates

a follow-up clarification question.

5.3 Proposed Approach

In this section, we describe our proposed system LEIA, which consists of two

components: (1) the Answer Classifier (AC) predicts the answer and (2) the
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Figure 5.1: Overview of the proposed architecture. Given a passage, conver-
sation history, and a question, the answer classifier predicts the answer. If
the predicted answer is More, the clarification question generator generates
a follow-up clarification question.

Question Generator (QG) generates a clarification question if the question is

underspecified, i.e., if the AC predicts More. The overview of our proposed

system is depicted in Figure 5.1.

5.3.1 Answer Classifier

The answer classifier predicts the answer to a question by reasoning over the

associated passage and the conversation history. An overview of the answer

classifier is depicted in Figure 5.2.

Embedding and Encoding

We use BERT (Devlin et al., 2019) for contextual word embedding. We take

the final transformer layer output for all wordpieces (Wu et al., 2016) in a sen-
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Figure 5.2: Answer classification model architecture.

tence/passage. We do not update BERT’s internal weights during training. If

a word is tokenized into multiple wordpieces, the output vectors correspond-

ing to the wordpieces are averaged to obtain the embedding of the word.

Next, we use bi-directional LSTMs (BiLSTM) (Hochreiter and Schmid-

huber, 1997) to contextually encode the embedding vectors. Suppose the

passage consists of T tokens, the question consists of U tokens, and the con-

versation history consists of V tokens. The BiLSTM outputs are unfolded

across time. The outputs for the passage, question, and the conversation his-

tory are represented as P 2 RT⇥H , Q 2 RU⇥H , and C 2 RV⇥H , respectively.

H represents the number of hidden units. The BiLSTM outputs are obtained

by concatenating the forward and backward LSTM outputs.
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Dual Co-attentive Encoding

We propose a novel dual co-attentive encoder to compute a combined rep-

resentation of the passage, question, and conversation history. Co-attention

network (Lu et al., 2016) was initially proposed for the visual question an-

swering (VQA) task. In VQA, it was used to jointly reason over image and

question attention. Xiong et al. (2017) adapted the co-attention network

for machine reading comprehension task (e.g., SQuAD). They used the co-

attention network to capture the interaction between the question and the

passage for answer span extraction. While Xiong et al. (2017) used a single

co-attentive encoder, we propose a dual co-attentive encoder which makes

use of two co-attentive encoder modules to capture the interaction between

the associated passage, the question, and the conversation history. More-

over, Xiong et al. (2017) used the co-attention network for a simpler machine

reading comprehension-based question answering task while we use the dual

co-attentive encoder for a more complex conversational question answering

task, in which it needs to reason over the conversation history in addition

to the associated passage and the question. The proposed dual co-attentive

encoder is described as follows.

We start by computing a similarity matrix that captures the similarity

between the question words and the words in the conversation history. This

similarity matrix, Aq,c 2 RU⇥V is given as:

Aq,c = Q W C>
, (5.1)
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where W 2 RH⇥H is trainable bi-linear matrix. Intuitively, Aq,c(i, j) repre-

sents the relevance of the jth word of the conversation history with respect to

the ith word of the question. We apply a row-wise softmax function for nor-

malization to produce the attention weights across the conversation history

for each word in the question, resulting in Ãq,c. Next, we compute the sum-

mary or weighted representation of the conversation history corresponding

to each question word.

Qc = Ãq,c C 2 RU⇥H (5.2)

Next, the initial question encoding vectors in Q (i.e., each row of Q) and the

vectors in Qc are concatenated and passed through a BiLSTM, which results

in Q̃ 2 RU⇥H . Q̃ essentially captures the interaction between the question

and the conversation history by jointly encoding them.

The same process is repeated for the passage encoding and Q̃. We com-

pute a similarity matrix, Ap,q = P W Q̃>
2 RT⇥U , which captures the

similarity between the passage word encoding vectors and the joint encoding

vectors in Q̃. Next, we normalize each row ofAp,q using the softmax function,

resulting in Ãp,q 2 RT⇥U . Now, similar to Equation (5.2), we compute the

summary or the weighted representation of the question and the conversation

history corresponding to each passage word.

Pq,c = Ãp,q Q̃ 2 RT⇥H (5.3)

To jointly encode the associated passage, the question, and the conver-
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sation history, we concatenate the encoding vectors of P and Pq,c, and feed

them to a BiLSTM which results in P̃ 2 RT⇥H .

Self-attentive Encoding and Aggregation

We use a self-attention layer on top of P̃, which can e↵ectively aggregate

evidence from the joint encoding vectors to infer the answer. First, we calcu-

late the self-attention matrix, As = P̃ W P̃>
2 RT⇥T , where W 2 RH⇥H

is a trainable bi-linear matrix. Next, we apply a row-wise softmax for nor-

malization, resulting in Ãs. Now, the self-attentive encoding vectors can be

aggregated as Ps = ÃsP̃ 2 RT⇥H . Then, we concatenate the joint encoding

vectors in P̃ with the self-attentive encoding vectors in Ps, followed by a

feed-forward layer, which results in Y 2 RT⇥H . We aggregate the vectors in

Y for the output layer. If the tth row of Y is represented as yt 2 RH , the

aggregated vector x 2 RH is:

at / exp(yt w
>) ; x = a Y (5.4)

where w 2 RH is trainable vector and the weights in a sum to one. Note that,

the bi-linear matrices used to compute Aq,c, Ap,q, and As are three di↵erent

matrices with di↵erent learned parameters.

Output Layer

In the output layer, we use a simple feed-forward layer for classification. The

number of output units is four for four di↵erent classes, i.e., Yes, No, Irrel-

evant, and More. For training, we minimize the cross-entropy loss summing
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Figure 5.3: Follow-up clarification question generation model architecture.

over all the training instances.

5.3.2 Clarification Question Generator

In this section, we describe the clarification question generation model. The

overview of the model is depicted in Figure 5.3. We develop a sequence-to-

sequence (Seq2Seq) model enhanced with a copying mechanism for generating

the follow-up clarification questions by inferring over the associated passage,

the question, and the conversation history. Gu et al. (2016) initially proposed

the Seq2Seq model with copy mechanism (CopyNet), and successfully used it

for text summarization. The copying mechanism refers to the mechanism that

locates a portion of the input text and puts it into the output sequence. While

Gu et al. (2016) employed the copy mechanism for summarization, we use it
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for follow-up clarification question generation as clarification questions often

repeat words from the passage, the question, and the conversation history.

Encoder

We create the source sequence by concatenating the associated passage, the

conversation history, and the question with special separator tokens. In the

remainder of the thesis, we denote the length of the source sequence as L. We

obtain the embedding vectors of the source words from GloVe (Pennington

et al., 2014) and BERT (Devlin et al., 2019). We use two layers of stacked

BiLSTMs to transform the source embedding vectors into a series of hidden

state representations. The BiLSTM outputs are unfolded across time, and

are represented as M 2 RL⇥H .

Decoder

We use an LSTM to read the encoding vectors in M and predict the target

sequence. The decoder predicts target words based on two perspectives: (1)

probabilities over the words in the vocabulary (2) probabilities over the source

words. It determines whether the word should be copied from the source text

or the decoder LSTM should generate a word from the vocabulary. Similar to

Bahdanau et al. (2015), the tth decoder LSTM state st 2 RH is represented

as:

st = f

⇣
�(qt�1), st�1, ct

⌘
, (5.5)

where �(qt�1) denotes the representation of the previously predicted clar-

ification question word, st�1 represents the previous decoder state, and ct
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represents the context vector. The context vector ct 2 RH is obtained by an

attention mechanism over the encoder hidden state vectors in M. If the ith

row of M is represented as mi 2 RH , ct is given as:

�i / exp(st�1Wm>
i
); ct = � M , (5.6)

where W 2 RH⇥H is a trainable matrix and the weights in � sum to

one. The representation of the previously predicted clarification question

word, �(qt�1), is derived by concatenating its word embedding representation

e(qt�1), and its location-specific hidden state representation  (qt�1) from M,

if qt�1 is copied from the source sentence. More specifically,

�(qt�1) = e(qt�1) ||  (qt�1) , (5.7)

where || represents the concatenation operation. As qt�1 might appear in

multiple locations in the source sequence,  (qt�1) is obtained by the weighted

sum of the hidden states in M corresponding to qt�1 (Gu et al., 2016). If qt�1

does not appear in the source sequence, we assign a zero vector to  (qt�1).

Next, we describe the prediction of the clarification question words.

Prediction with Copy Mechanism

We represent the target vocabulary with V , and use UNK for any out-of-

vocabulary (OOV) word. Additionally, for copying, we consider another set

of words, S, consisting of all the unique words in a particular source sequence.

Overall, the instance-specific vocabulary is V [UNK[S. Given the decoder
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LSTM state st, the probability of generating any clarification question word

qt is given by the mixture of two probabilities:

p(qt|st, qt�1, ct,M) = pg(qt|st, qt�1, ct,M) (5.8)

+ pc(qt|st, qt�1, ct,M) ,

where pg represents the probability for generating qt from the vocabulary,

and pc represents the probability for copying qt from the source sequence.

The probabilities for generation and copying are given as follows:

pg(qt|.) =

8
>><

>>:

1

Z
exp(⇠g(qt)), qt 2 V

1

Z
exp(⇠g(UNK)), qt = UNK

(5.9)

pc(qt|.) =
1

Z

X

i:wi=qt

exp(⇠c(wi)), qt 2 S (5.10)

where ⇠g(.) and ⇠c(.) are the scoring functions for generating qt from the

vocabulary V , and copying from the source sequence, respectively. Z is the

shared normalization factor for both pg and pc.

Z =
X

w2V [ UNK

exp(⇠g(w)) +
X

w2S

exp(⇠c(w)) (5.11)

Due to the shared normalization term Z, the two modes, i.e., generation from

the vocabulary, and copying from the source, compete through a softmax

function (Gu et al., 2016).
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The scoring functions are as follows:

⇠g(qt = v) = v s>
t
, v 2 V [ UNK (5.12)

⇠c(qt = vj) = tanh(mj W) s>
t
, vj 2 S (5.13)

where v 2 RH is the embedding vector representation of the word v and

W 2 RH⇥H is a trainable matrix. Note that pc(qt) = 0 if qt does not appear

in the source sequence, and pg(qt) = 0 when qt only appears in the source

sequence.

5.4 Experiments

We start by describing the experimental settings. Then, we present the ex-

perimental results and analysis.

5.4.1 Settings

We experimented with the recently proposed ShARC dataset (Saeidi et al.,

2018), which is built over regulatory texts. The ShARC dataset is developed

from distinct snippets of rule text (e.g., tax and visa regulations, tra�c rules,

etc.). Each example has an input question and a dialog tree. At every step

in the conversation, there is a follow-up question with Yes/No answer. The

dataset is comprised of utterances from every tree. Overall, the dataset con-

sists of 32,436 utterances. These utterances are divided into training, develop-

ment, and test sets targeting a 70%/10%/20% split. Each utterance consists

of a rule text (i.e., the associated passage), a series of question-answer pairs
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as conversation history, a question, and an answer or a follow-up clarification

question if the question is underspecified. The test set is hidden, and we need

to submit our source code and trained model for evaluation.

We use Spacy1 for tokenization. We use the pre-trained BERT (Devlin

et al., 2019) model for word embeddings, and the model parameters are kept

fixed during training. The number of hidden units in all the LSTMs is 50

(H = 100). We use dropout (Srivastava et al., 2014) with probability 0.5

for every learnable layer. The minibatch size is fixed at 10 for the answer

classifier and 32 for the clarification question generator. For the clarifica-

tion question generator, we use 300-dimension pre-trained word vectors from

GloVe (Pennington et al., 2014) and we do not update them during training.

We use the Adam optimizer (Kingma and Ba, 2015) with a learning rate

of 0.001. Following Saeidi et al. (2018), we use micro- and macro-averaged

accuracies for evaluating the answer classification models. The clarification

question generation models are evaluated using BLEU (Papineni et al., 2002)

scores.

5.4.2 Main Results

Table 5.2 compares the performance of LEIA with the recently published

conversational QA systems for ShARC2 just before submitting this thesis,

including BiSon of Lawrence et al. (2019). Saeidi et al. (2018) proposed the

combined model (CM), which consists of a feature-engineered random for-

1https://spacy.io/api/tokenizer
2There are a couple of other unpublished systems that appeared on the ShARC leader-

board (https://sharc-data.github.io/leaderboard.html) with better performance than
LEIA at the time of submitting this thesis.
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Model
Micro
Acc.

Macro
Acc.

BLEU-1 BLEU-4

CM† 61.9 68.9 54.4 34.4
NMT† 44.8 42.8 34.0 7.8
BERT-QA? 63.6 70.8 46.2 36.3
E3? 67.6 73.3 54.1 38.7
BiSon 66.9 71.6 58.8 44.3
LEIA 64.9 71.4 55.3 38.9

Table 5.2: Comparison results on the ShARC test set. †(Saeidi et al., 2018)
?(Zhong and Zettlemoyer, 2019)

Model Micro Acc. Macro Acc.

– BERT 61.0 68.2
– Self-Attn. 65.8 71.8
– Dual Co-attn. 64.8 71.0
– Qs-Hist Co-attn. 67.5 73.4
– Psg-QH Co-attn. 65.6 71.8

LEIA-AC 68.3 74.1

Table 5.3: Ablation studies for the answer classifier on the ShARC develop-
ment set.

est answer classifier, and a rule-based clarification question generator. Saeidi

et al. (2018) also proposed a neural model (NMT) using a multi-task learn-

ing framework. It has a classification head and a GRU-based decoder. CM

performs better than NMT because CM uses a rule-based follow-up ques-

tion generation model which allows it to exploit the structure of the problem

which NMT does not seem to do e↵ectively. Table 5.2 shows that our pro-

posed system outperforms both CM and NMT by large margins.

Zhong and Zettlemoyer (2019) proposed an entailment-driven extract and

edit network (E3) and a baseline BERT-based extractive QA model (BERT-

QA). E3 is a conversational machine reading model that jointly extracts a

set of decision rules from the rule text passage while reasoning about which
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rules are entailed by the conversation history and which rules still need to

be edited to create follow-up clarification questions. Our proposed system

outperforms the BERT-QA model on both the answer classification and the

clarification question generation tasks. While the performance of our system

is lower than E3 on the answer classification task, it performs slightly better

on the clarification question generation task. In addition, our proposed sys-

tem is generic and does not have any particular dataset-specific module in

contrast to the E3 that contains modules that are ShARC-specific, such as

rule extraction by string-matching, usage of full dialog trees to extract rules

from the associated passages, etc.

Lawrence et al. (2019) proposed a sequence generation model that lever-

ages both past and future tokens. They proposed a bi-directional sequence

generation process (BiSon) by employing special placeholder tokens in the

output sequence. These placeholder tokens are replaced by tokens of the out-

put vocabulary. This e↵ectively allows a transformer encoder to attend to

both past and future, not-yet-produced tokens. To determine where to posi-

tion the placeholder tokens at training time, they explored di↵erent stochastic

placeholder replacement strategies, based on Bernoulli and Gaussian random

variables. This is crucial as the models need to be exposed to a large num-

ber of heterogeneous placeholder configurations. They also explored several

strategies for iteratively generating a complete output sequence from an ini-

tial sequence of placeholders at inference time. Notably, their approach is

not restricted to produce the output sequence from left to right. Lawrence

et al. (2019) achieved significant improvements over the prior state of the art

on the ShARC dataset in the clarification question generation task. BiSon
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Model BLEU-1 BLEU-2 BLEU-3 BLEU-4

– BERT 50.8 40.8 35.9 33.1
– Copy 20.6 9.9 6.1 3.7
– 2nd BiLSTM 53.3 43.5 37.0 31.8

LEIA-QG 59.6 51.7 46.9 43.3

Table 5.4: Ablation studies for the clarification question generator on the in-
stances of ShARC development set that require follow-up clarification ques-
tion generation.

Passage: In order to qualify for this benefit program, homeowners
and renters must have sustained physical damage and be located in a
disaster declared county.
Conversation History: fq1 : Are you located in a disaster declared
county? fa1 : Yes
Question: My house is no more damaged than when I moved into it
but it’s not like I can really a↵ord to fix it up as I only earn 7,6000 a
year from my job as a seamstress. Do I qualify for this loan?
Reference Answer: No; LEIA Prediction: No; w/o Dual
Co-attention Prediction: Yes

Table 5.5: An illustrating example of the dual co-attentive encoder.

outperforms LEIA on both the answer classification task and the clarification

question generation task.

5.4.3 Ablation Studies

To better understand how the proposed system works, we perform rigorous

experiments by removing di↵erent components from the answer classifier and

the clarification question generator.

Table 5.3 shows the performance of the LEIA answer classifier (LEIA-AC)

when di↵erent components are removed. When we do not consider BERT for

word embeddings, GloVe (Pennington et al., 2014) vectors are used for word

embeddings. When we do not consider self-attentive encoding, the aggre-
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gation (Equation (5.4)) step is applied on the joint encoding vectors in P̃.

When the dual co-attentive encoder is removed, we concatenate the con-

textual encoding representations of all the words in the passage, question,

and conversation history. The concatenated representation can be denoted

as D 2 R(T+U+V )⇥H . The self-attentive encoding and the aggregation step

are applied on D for answer prediction. The dual co-attention helps to vali-

date the rules mentioned in the passage by capturing the interactions among

the passage, conversation history, and the question. Consider the example

in Table 5.5. While the proposed model could correctly predict the answer

by cross-validating the two required rules (given in italics), it fails to infer

the answer correctly when we do not consider the dual co-attention encoder.

When we do not consider the co-attention between the question and the con-

versation history (– Qs-Hist Co-attn.), the question encoding vectors in Q

and the conversation history vectors in C are concatenated and fed to the

other co-attentive encoder. Similarly, when the co-attention between the pas-

sage encoding and the joint encoding of the question and the conversation

history is not considered (– Psg-QH Co-attn.), the passage encoding vectors

in P and the joint encoding vectors in Q̃ are concatenated. As shown in

Table 5.3, LEIA-AC outperforms all the competing models and justifies the

importance of the individual components.

In Table 5.4, we show the e↵ectiveness of di↵erent components in the

LEIA clarification question generator (LEIA-QG). Note that the question

generation models are trained and evaluated only on the instances which re-

quire clarification question generation. When we do not consider BERT for

source word embeddings, only pre-trained GloVe vectors are used. When the
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Model
Micro
Acc.

Macro
Acc.

BLEU-1 BLEU-4

Joint 67.9 74.1 48.3 30.0
Pipeline 68.3 74.1 59.6 45.1

Table 5.6: Comparison with the jointly learned model on the ShARC devel-
opment set.

copy mechanism is disabled, a standard attention-based sequence-to-sequence

model (Bahdanau et al., 2015) is used for clarification question generation.

In this case, the probability of generating a clarification question word is

the same as the generation probability pg. When the second BiLSTM is not

considered for encoding, the first BiLSTM outputs are directly fed to the de-

coder. Table 5.4 shows that all the mentioned components in LEIA-QG have

a large impact on the final performance. Copy mechanism has the greatest

impact because a clarification question often contains words from the asso-

ciated passage and the conversation history. Disabling the copy mechanism

hinders the model to output the words which are only present in the source

sequence, and thereby degrades the performance by a large margin.

5.4.4 Joint Task Learning

We also experimented with jointly training the answer classifier and the clar-

ification question generator. In this case, we use a multi-task learning setup.

For the instances with answer Yes, No, or Irrelevant, we fix the clarification

question generator output as NULL. For the joint model, we use a shared

embedding layer for the two tasks. During training, the overall training loss,

L is computed by a weighted sum of the answer classification loss Lac and
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the clarification question generation loss Lqg.

L = (1� ↵) Lac + ↵ Lqg , (5.14)

where ↵ is the weighting factor, and 0 < ↵ < 1. We found that the joint

model performs best at ↵ = 0.999. During prediction, if the answer classifica-

tion module predicts More, we take the output from the question generation

module.

Table 5.6 shows the performance comparison between the joint model and

the pipeline system (LEIA). Although the joint model achieves competitive

performance for the answer classification task, it performs poorly on the

clarification question generation task. This is primarily because the training

data of ShARC is not large enough, making it di�cult for the joint model to

learn the two tasks together.

As shown in Figure 5.4, we observed that the variations in performance

of the joint model across di↵erent tasks are not consistent when we vary the

value of ↵. Hence, it requires a very careful tuning of ↵ for e↵ectively learning

the two tasks jointly.

5.4.5 Error Analysis

Table 5.7 shows the confusion matrix for the proposed answer classifier model

predictions on the ShARC development set. Our proposed model predicted

incorrectly for 31.7% instances. We randomly sampled 50 such instances and

manually analyze them. We observe that in 16% of the cases, the question

partially matched the passage or the conversation history, and the model
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Figure 5.4: Performance of the joint model on the development set for di↵er-
ent values of ↵.

Gold
Yes No Irrelevant More

P
re
d
ic
te
d Yes 554 106 0 144

No 121 511 0 134
Irrelevant 0 0 136 2
More 122 85 5 350

Table 5.7: Confusion matrix for the answer classifier predictions on the
ShARC development set.

arrived at Yes or No answer instead of predicting More. For 20% of the

cases, the rules were too complex to resolve. The errors might be due to the

presence of distracting words in the question or the conversation history in

16% of the cases. We observed that the model failed to answer correctly for

12% of the cases when it requires numerical comparison. The remaining errors

occurred for various reasons such as when it requires external knowledge, the

passage mentions some exception rules, etc.

Both valid

Passage: You may be an eligible Veteran if:
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* You have an Honorable Discharge, and

* You have a High School Diploma (or equivalent) - or 12 hours of college

credit, and

* You meet the requirements under one of the four categories, listed on the

Department of Veterans A↵airs (VA) Montgomery GI Bill Active Duty page

Conversation History: N/A

Question: I graduated from high school. May I be an eligible Veteran?

Reference Answer: Do you have an honorable discharge?

LEIA Prediction: Do you have an Honorable Discharge ?

E3 Prediction: do You have an Honorable Discharge ?

Both invalid

Passage: ## What youll need

Youll need accurate information about your:

* savings

* income, including your partners (from payslips, for example)

* existing benefits and pensions (including anyone living with you)

* outgoings (such as rent, mortgage, childcare payments)

Conversation History:

fq1 : Is this information about your savings? fa1 : Yes

Question: The information is about my savings. I do not have info about

my existing benefits. Do I need information about this?

Reference Answer: Do you have accurate info about your income?

LEIA Prediction: Are you accurate information about your savings ?
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E3 Prediction: do you income, including your partners (from payslips, for

example ) ?

LEIA valid, E3 invalid

Passage: VA can also reimburse expenses for covered travel to and from your

doctor or health care facility within a reasonable commuting area. Preautho-

rization is required for travel outside of the commuting area.

Conversation History: N/A

Question: I left the country a year ago, but I didn’t get any preauthorization.

I’m living in a government owned area. Can the VA reimburse my travel to

and from the doctor?

Reference Answer: Is it in a reasonable commuting area?

LEIA Prediction: Is it in a reasonable commuting area ?

E3 Prediction: are you travel outside of the commuting area ?

LEIA invalid, E3 valid

Passage: ## Items that qualify for the zero rate

You may be able to apply zero VAT when you sell the following to an eligible

charity:

* equipment for making talking books and newspapers

* lifeboats and associated equipment, including fuel

* medicine or ingredients for medicine

* resuscitation training models

Conversation History:

fq1 : Q: Is it equipment for making talking books and newspapers? fa1 : No
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Question: I am selling rowboats, along with lots of other stu↵. Can I apply

zero VAT to this item?

Reference Answer: Are you selling medicine or ingredients for medicine?

LEIA Prediction: Is it resuscitation training models ?

E3 Prediction: is it medicine or ingredients for medicine ?

Table 5.8: Examples illustrating the quality of generated clarification ques-
tions by LEIA and E3.

We also manually analyzed 50 randomly chosen instances from the de-

velopment set to compare the generated question quality between LEIA and

E3. We found that both generated perfectly valid questions for 58% of the

cases. Both generated incorrect questions for 16% of the cases. For 18% of

the cases, our system generated valid questions but E3 could not. For the

remaining 8% of the cases, E3 generated the questions correctly but our sys-

tem could not. Table 5.8 presents some example instances for each of these

cases.

We also perform an error analysis of the proposed system to understand

the impact of conversation history. Figure 5.5 shows the performance of LEIA

on the ShARC development set instances with di↵erent numbers of turns in

the conversation history. The results are obtained for di↵erent disjoint sets of

the ShARC development set, corresponding to the number of question-answer

pairs in the conversation history. When the number of history turns is zero,

the instances do not contain any conversation history. Overall, the proposed

system performs better in both answer classification and clarification question

generation when there are more turns in the conversation history. This is
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Figure 5.5: Performance of LEIA on the development set instances with dif-
ferent numbers of conversation history turns.

because when there exist more turns in the conversation, the model has more

context to e↵ectively capture the interaction between the current question

and the conversation history, and hence performs better on both tasks.

5.5 Summary

In summary, we have proposed a system, named LEIA, for conversational

question answering. Given an associated passage and a conversation history,

it either answers a question or generates a clarification question if the posed

question is underspecified. LEIA consists of an answer classifier that is based

on a dual co-attention network, and a clarification question generator which

is based on a sequence-to-sequence neural network with a copy mechanism.

Experiments on the ShARC dataset shows the e↵ectiveness of the proposed

system. We have also performed detailed ablation studies to show the impact

of di↵erent components used to build the system. Additionally, we have also

shown that the pipeline-based approach performs better than the joint model
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in which the answer classifier and the question generator are trained together

in an end-to-end fashion.
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Chapter 6

Conclusions

In this thesis, we provide a brief overview of early works in question an-

swering, and how it evolved in recent years. We have also elucidated how

we contributed to the development of machine reading comprehension-based

question answering.

We have addressed issues related to the current answer span extraction

approaches for machine reading comprehension (RC) and have proposed solu-

tions to these problems. We have introduced a question-focused multi-factor

attention network (AMANDA) that can be trained in an end-to-end fashion.

While the proposed multi-factor attentive encoding method accumulates rel-

evant facts distributed across multiple sentences, question-focused attention

pointing helps to learn the important question words and thereby implicitly

infer the answer type during the extraction of the answer span. We have

shown that this system significantly outperforms prior approaches.

Additionally, we have addressed a more complex nil-aware answer span
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extraction task. Current answer span extraction approaches for RC always

make an impractical assumption that there always exists a valid answer in

the associated passage for a given question. We developed a unified nil-aware

answer span extraction framework that can be integrated easily with our pre-

viously proposed model AMANDA and several other recently proposed an-

swer span extraction models developed for RC (including BiDAF, DrQA, and

R-Net). We have also shown that the combined models can be trained in an

end-to-end fashion. Experiments have shown that our proposed framework,

when integrated with other answer extraction models, yields significantly bet-

ter performance compared to the corresponding pipeline and threshold-based

models.

Finally, we proposed a conversational QA system that can answer ques-

tions in a conversation. It is also able to generate follow-up clarification ques-

tions if the questions are underspecified. The proposed system is based on a

pipeline approach, which consists of an answer classification model, followed

by a clarification question generator model. The answer classifier first pre-

dicts the answer, and based on whether the predicted answer suggests asking

a clarification question, the clarification question generator model generates a

question. The answer classifier model is based on a dual co-attentive encoder,

and the clarification question generator is based on a sequence-to-sequence

neural network enhanced with a copy mechanism. Experiments have shown

that our proposed system achieves competitive performance.

Although it is really exciting how this field has progressed in the past few

years, there is still a long way to go towards genuine human-level reading

comprehension. There are still many existing challenges and open questions

124



that we will need to address in the future. Some potential future works are

outlined below:

1. One of the major issues of the current machine reading comprehension

models is that they fail to answer questions that require long answers,

such as how and why questions. In the future, we will have to focus on

developing models that can truly understand what is being discussed,

rather than just picking a short span of text as an answer.

2. Another interesting future work is how we can leverage machine reading

comprehension models in a more practical question answering setting.

In most of the machine reading comprehension-based QA tasks, a ques-

tion is associated with a predefined document. It would be interesting

to see how such models can help when it needs to reason over multiple

documents that are obtained from information retrieval engines.

3. Although there has been significant progress in the QA field, we are

still far from having a QA system that can explain the reasoning behind

giving a particular answer to a question. An explainable QA system can

provide transparency to the underlying computational model and can

help develop interfaces to enable the end-users to access and validate

the interpretation and allow information feedback.

4. Although there is a surge of interest in conversational machine reading

comprehension-based QA in the last few years, the tasks are far away

from real-world settings. We hope to witness more research on improv-

ing the interaction ability of the conversational QA systems, making
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the tasks closer to real-world scenarios.
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Ćıcero Nogueira dos Santos, Ming Tan, Bing Xiang, and Bowen Zhou. At-
tentive pooling networks. arXiv preprint arXiv:1602.03609, 2016.

Huizhong Duan, Yunbo Cao, Chin-Yew Lin, and Yong Yu. Searching ques-
tions by identifying question topic and question focus. In Proceedings of
ACL, 2008.

129



Matthew Dunn, Levent Sagun, Mike Higgins, V. Ugur Güney, Volkan Cirik,
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Karl Moritz Hermann, Tomás Kociský, Edward Grefenstette, Lasse Espeholt,
Will Kay, Mustafa Suleyman, and Phil Blunsom. Teaching machines to
read and comprehend. In Advances in NIPS, 2015.

Felix Hill, Antoine Bordes, Sumit Chopra, and Jason Weston. The goldilocks
principle: Reading children’s books with explicit memory representations.
In Proceedings of ICLR, 2016.

Lynette Hirschman and Rob Gaizauskas. Natural language question answer-
ing: The view from here. JNLE, 7(4):275–300, 2001.

Lynette Hirschman, Marc Light, Eric Breck, and John D. Burger. Deep Read:
A reading comprehension system. In Proceedings of ACL, 1999.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
Computation, 9(8):1735–1780, 1997.

Minghao Hu, Furu Wei, Yuxing Peng, Zhen Huang, Nan Yang, and Dong-
sheng Li. Read + Verify: Machine reading comprehension with unanswer-
able questions. In Proceedings of AAAI, 2019.

Hsin-Yuan Huang, Eunsol Choi, and Wen tau Yih. FlowQA: Grasping flow
in history for conversational machine comprehension. In Proceedings of
ICLR, 2019.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. TriviaQA:
A large scale distantly supervised challenge dataset for reading compre-
hension. In Proceedings of ACL, 2017.

131



Rudolf Kadlec, Martin Schmid, Ondrej Bajgar, and Jan Kleindienst. Text
understanding with the attention sum reader network. In Proceedings of
ACL, 2016.

Michael Kaisser, Silke Scheible, and Bonnie Webber. Experiments at the
University of Edinburgh for the TREC 2006 QA track. In Proceedings of
TREC, 2006.

Boris Katz, Gregory Marton, Sue Felshin, Daniel Loreto, Ben Lu, Federico
Mora, Ozlem Uzuner, Michael McGraw-Herdeg, Natalie Cheung, Yuan
Luo, Alexey Radul, Yuan Shen, and Gabriel Zaccak. Question answer-
ing experiments and resources. In Proceedings of TREC, 2006.

Daniel Khashabi, Snigdha Chaturvedi, Michael Roth, Shyam Upadhyay, and
Dan Roth. Looking beyond the surface: A challenge set for reading com-
prehension over multiple sentences. In Proceedings of NAACL, 2018.

Seokhwan Kim, Luis Fernando D’Haro, Rafael E. Banchs, Jason Williams,
and Matthew Henderson. The fourth dialog state tracking challenge. In
Proceedings of IWSDS, 2016.

Yoon Kim. Convolutional neural networks for sentence classification. In
Proceedings of EMNLP, 2014.

Diederik P. Kingma and Jimmy Lei Ba. Adam: A method for stochastic
optimization. In Proceedings of ICLR, 2015.

Sosuke Kobayashi, Ran Tian, Naoaki Okazaki, and Kentaro Inui. Dynamic
entity representation with max-pooling improves machine reading. In Pro-
ceedings of NAACL, 2016.
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Hermann, Gábor Melis, and Edward Grefenstette. The NarrativeQA read-
ing comprehension challenge. TACL, 6:317–328, 2018.

Souvik Kundu and Hwee Tou Ng. A question-focused multi-factor attention
network for question answering. In Proceedings of AAAI, 2018a.

Souvik Kundu and Hwee Tou Ng. A nil-aware answer extraction framework
for question answering. In Proceedings of EMNLP, 2018b.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard H. Hovy.
RACE: large-scale reading comprehension dataset from examinations. In
Proceedings of EMNLP, 2017.

132



Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush
Sharma, and Radu Soricut. ALBERT: A lite BERT for self-supervised
learning of language representations. arXiv preprint arXiv:1909.11942,
2019.

Carolin Lawrence, Bhushan Kotnis, and Mathias Niepert. Attending to
future tokens for bidirectional sequence generation. In Proceedings of
EMNLP, 2019.

Kenton Lee, Tom Kwiatkowski, Ankur Parikh, and Dipanjan Das. Learning
recurrent span representations for extractive question answering. arXiv
preprint arXiv:1611.01436, 2016.

Wendy Grace Lehnert. The process of question answering. PhD thesis, Yale
University, 1977.

Tao Lei, Hrishikesh Joshi, Regina Barzilay, Tommi S. Jaakkola, Kateryna
Tymoshenko, Alessandro Moschitti, and Lluis Marquez. Semi-supervised
question retrieval with gated convolutions. In Proceedings of NAACL,
2016.

Jiwei Li, Will Monroe, Alan Ritter, Dan Jurafsky, Michel Galley, and Jianfeng
Gao. Deep reinforcement learning for dialogue generation. In Proceedings
of EMNLP, 2016a.

Qi Li, Tianshi Li, and Baobao Chang. Discourse parsing with attention-based
hierarchical neural networks. In Proceedings of EMNLP, 2016b.

Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries.
In Text Summarization Branches Out, 2004.

Yankai Lin, Haozhe Ji, Zhiyuan Liu, and Maosong Sun. Denoising distantly
supervised open-domain question answering. In Proceedings of ACL, 2018.

Kenneth C. Litkowski. Exploring document content with XML to answer
questions. In Proceedings of TREC, 2005.

Jiasen Lu, Jianwei Yang, Dhruv Batra, and Devi Parikh. Hierarchical
question-image co-attention for visual question answering. In Advances
in NIPS, 2016.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Je↵ Dean.
Distributed representations of words and phrases and their compositional-
ity. In Advances in NIPS, 2013.

133



Mitra Mohtarami, Yonatan Belinkov, Wei-Ning Hsu, Yu Zhang, Tao Lei,
Kfir Bar, Scott Cyphers, and Jim Glass. SLS at SemEval-2016 Task 3:
Neural-based approaches for ranking in community question answering. In
Proceedings of the Workshop on SemEval, 2016.

Dan Moldovan, Sanda Harabagiu, Roxana Girju, Paul Morarescu, Finley
Lacatusu, Adrian Novischi, Adriana Badulescu, and Orest Bolohan. LCC
tools for question answering. In Proceedings of TREC, 2002.

Dan Moldovan, A Harabagiu, Christine Clark, Mitchell Bowden, John
Lehmann, and John Williams. Experiments and analysis of LCC’s two
QA systems over TREC 2004. In In Proceedings of TREC, 2004.

Dan Moldovan, Mitchell Bowden, and Marta Tatu. A temporally-enhanced
poweranswer in TREC 2006. In Proceedings of TREC, 2006.

Dan Moldovan, Christine Clark, and Mitchell Bowden. Lymba’s PowerAn-
swer 4 in TREC 2007. In Proceedings of TREC, 2007.

Karthik Narasimhan and Regina Barzilay. Machine comprehension with dis-
course relations. In Proceedings of ACL, 2015.

Hwee Tou Ng, Leong Hwee Teo, and Jennifer Lai Pheng Kwan. A machine
learning approach to answering questions for reading comprehension tests.
In Proceedings of the Joint SIGDAT Conference on EMNLP and Very
Large Corpora, 2000.

Hwee Tou Ng, Jennifer Lai Pheng Kwan, and Yiyuan Xia. Question an-
swering using a large text database: A machine learning approach. In
Proceedings of EMNLP, 2001.

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao, Saurabh Tiwary, Ran-
gan Majumder, and Li Deng. MS MARCO: A human generated machine
reading comprehension dataset. In Advances in NIPS, 2016.

Boyuan Pan, Hao Li, Zhou Zhao, Bin Cao, Deng Cai, and Xiaofei He.
MEMEN: Multi-layer embedding with memory networks for machine com-
prehension. arXiv preprint arXiv:1707.09098, 2017.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. BLEU: A
method for automatic evaluation of machine translation. In Proceedings of
ACL, 2002.

Wenzhe Pei, Tao Ge, and Baobao Chang. Max-margin tensor neural network
for Chinese word segmentation. In Proceedings of ACL, 2014.

134



Je↵rey Pennington, Richard Socher, and Christopher D. Manning. GloVe:
Global vectors for word representation. In Proceedings of EMNLP, 2014.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher
Clark, Kenton Lee, and Luke Zettlemoyer. Deep contextualized word rep-
resentations. In Proceedings of NAACL, 2018.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang.
SQuAD: 100,000+ questions for machine comprehension of text. In Pro-
ceedings of EMNLP, 2016.

Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know:
Unanswerable questions for SQuAD. In Proceedings of ACL, 2018.

Siva Reddy, Danqi Chen, and Christopher D. Manning. CoQA: A conversa-
tional question answering challenge. TACL, 2019.

Matthew Richardson, Christopher J. C. Burges, and Erin Renshaw. MCTest:
A challenge dataset for the open-domain machine comprehension of text.
In Proceedings of EMNLP, 2013.

Ellen Rilo↵ and Michael Thelen. A rule-based question answering system for
reading comprehension tests. In ANLP-NAACL 2000 Workshop: Reading
Comprehension Tests as Evaluation for Computer-Based Language Under-
standing Systems, 2000.

Salvatore Romeo, Giovanni Da San Martino, Alberto Barron-Cedeno,
Alessandro Moschitti, Yonatan Be-linkov, Wei-Ning Hsu, Yu Zhang, Mi-
tra Mohtarami, and James Glass. Neural attention for learning to rank
questions in community question answering. In Proceedings of COLING,
2016.

Mrinmaya Sachan, Kumar Avinava Dubey, Eric P. Xing, and Matthew
Richardson. Learning answer-entailing structures for machine comprehen-
sion. In Proceedings of ACL, 2015.

Marzieh Saeidi, Max Bartolo, Patrick Lewis, Sameer Singh, Tim Rocktäschel,
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